

Mathematical Programming Course Specifications

Faculty: Faculty of computer and informatics

Department: Scientific Computing

Course Specifications

Program (s) on which the course is given	:	Bachelor in Computer & Information Sciences
Major or Minor element of programs	:	Scientific Computing
Department offering the program	:	Scientific Computing
Department offering the course	:	Scientific Computing
Academic year / Level	:	4 th Year /B.Sc.
Date of specification approval	:	15/10/2009

A. Basic Information

Title: Mathematical programming	Code: SCC 435	
Lecture: 3 hrs/week	Practical: 2 hrs/week	Tutorial:
Credit Hours:	Total: 5 hrs/Week	

B. Professional Information

1. Overall Aims of Course:

Student will be able to introduce the basics of Networks: shortest paths In addition to introduce The concepts of Maximum flow problems, minimum-cost flow problems, maximum cardinality matching. Student can be related to Scheduling problems: network scheduling, single machine

scheduling, parallel machine scheduling. Graduates will be able to use these concepts and apply them on real work.

2. Intended Learning Outcomes of Course (ILOs):

a. Knowledge and Understanding:

- a1-State the basic definitions and properties of trees, graphs and networks.
- a2- Define and be aware of the central role of graphs and networks in commerce and business modeling.
- a3- Have experience in translating decision problems into a network format for solution.
- a4-Mention optimization problems which are computationally complex and require heuristic solution methods.
- a5-Give an account and be familiar with network problems and algorithms.

b. Intellectual Skills:

- b1-Estimate and implement the algorithms presented, and run them on unseen examples.
- b2-Critisis recognise and use flow networks.
- b3-Analyse appropriate algorithms for network optimisation.

c. Professional and Practical Skills:

c1- Be able to use mathematical programming techniques to model and solve practical problems in various scientific disciplines.

d. General and Transferable Skills:

- d1- Be able to work in a group.
- d2- Be able to write effective programs.

e. Attitude:

- e1- A knowledge and respect of ethics and ethical standards in relation to a major area of study.
- e2- Illustrate the use of example, analogy, and counter-analogy in ethical argument.
- e3- Demonstrate an ethical behavior toward software copyrights.
- e4- Relationship Emphasis a successful with other students.
- e5-Learn how to make relation with other, and the limit of this relation.

- e6- Explain the nature of privacy and how it is protected by the Data Protection.
- e7-Know the danger of viruses and how to protect yourself from it.
- e8- Know the culture of other peoples.
- e9- Discuss the legal background of copyright in national and international law.

3. Contents:

Торіс	No. of	Lecture	Tutorial/
	hours		Practical
Networks: shortest paths (single source paths, all	5	3	2
pairs paths), minimum spanning tree – I	5		
Networks: shortest paths (single source paths, all	5	3	2
pairs paths), minimum spanning tree – II	5		
Networks: shortest paths (single source paths, all	5	3	2
pairs paths), minimum spanning tree – III	5		
Maximum flow problems, minimum-cost flow			
problems, maximum cardinality matching, and	5	3	2
traveling salesman problem. – I			
Maximum flow problems, minimum-cost flow			
problems, maximum cardinality matching, and	5	3	2
traveling salesman problem. – II			
Maximum flow problems, minimum-cost flow			
problems, maximum cardinality matching, and	5	3	2
traveling salesman problem. – III			
Maximum flow problems, minimum-cost flow			
problems, maximum cardinality matching, and	5	3	2
traveling salesman problem. – IV			
Graph coloring: independent set approach,			
approximation sequential algorithm, and backtracking	5	3	2
sequential algorithm. – I			
Graph coloring: independent set approach,	5	3	2

approximation sequential algorithm, and backtracking			
sequential algorithm. – II			
Graph coloring: independent set approach,			
approximation sequential algorithm, and backtracking	5	3	2
sequential algorithm. – III			
Scheduling problems: network scheduling, single	5	3	2
machine scheduling, parallel machine scheduling. – I	5	5	2
Scheduling problems: network scheduling, single	5	3	2
machine scheduling, parallel machine scheduling. – I	5	5	2
Scheduling problems: network scheduling, single	5	3	2
machine scheduling, parallel machine scheduling. – II	5	5	~
Scheduling problems: network scheduling, single	5	3	2
machine scheduling, parallel machine scheduling III	5		
Revision	5	3	2