

Finite Element Methods Course Specifications

Faculty	: Faculty	of com	puter and	informatics
acuity	· racuit		puter and	mormatics

Department: Scientific Computing

Program(s) on which the course is given	:	Bachelor in Computer & Information Sciences
Major or Minor element of programs	:	Scientific Computing
Department offering the program	:	Scientific Computing
Department offering the course	:	Scientific Computing
Academic year / Level	:	4 th Year/B.Sc.
Date of specification approval	:	20/10/2009

A. Basic Information

Title: Finite Element Methods	Code: SCC 436	
Lecture: 3 hrs/week	Tutorial: 2 hrs/week	Practical:
Credit Hours:	Total: 5 hours/ week	

B. Professional Information

1. Overall Aims of Course:

This course introduces students to advanced numerical technique (Finite Element Method) for modeling and solving differential equations.

2. Intended Learning Outcomes of Course (ILOs):

a. Knowledge and Understanding:

- a1- Mention Galerkin's method to solve differential equation.
- a2- Illustrate the finite element model of differential equation.
- a3- Compare between the exact solution and FEM solution.
- a4- Summarize Linear, quadratic and cubic shape functions and their application on approximation of functions.
- a5- State one-dimensional model.
- a6- List the students the bases of FEM model.

b. Intellectual Skills:

- b1-Formulate the FEM model.
- b2- Apply FEM method to second order and higher order differential equations in one and two dimensions.
- b3- Propose FEM model for one-dimensional problems and higher.
- b4-Understand the numerical solution and the exact solution.

c. Professional and Practical Skills:

- c1- Develop effective computer programs to solve numerical problems.
- c2- Use for the mathematical environment like Mathematica, MatLab, etc.
- c3- Use MatLab toolbox to simulate the solution.

d. General and Transferable Skills:

- d1-Write effective computer programs that employ efficient algorithms.
- d2- Analyze and design algorithms for solving scientific problems related to other disciplines.
- d3-Teach the students how to make a flow-chart.
- d4- Present scientific work and explain technical material

e. Attitude

- e1- A knowledge and respect of ethics and ethical standards in relation to a major area of study.
- e2- Illustrate the use of example, analogy, and counter-analogy in ethical argument.

- e3- Demonstrate an ethical behavior toward software copyrights.
- e4- Relationship Emphasis a successful with other students.
- e5- Learn how to make relation with other, and the limit of this relation.
- e6- Explain the nature of privacy and how it is protected by the Data Protection.
- e7- Know the danger of viruses and how to protect yourself from it.
- e8- Know the culture of other peoples.
- e9-Discuss the legal background of copyright in national and international law.

3. Contents:

Торіс	No. of	Lecture	Tutorial/P
	hours		ractical
The basic concepts of finite element method (Part I)	5	3	2
The basic concepts of finite element method (Part II)	5	3	2
Variation formulation and approximation (Part I)	5	3	2
Variation formulation and approximation (Part II)	5	3	2
Finite element method of one-dimensional second- order equations (Part I)	5	3	2
Finite element method of one-dimensional fourth- order equations (Part II)	5	3	2
Finite element method of one-dimensional time- dependent problems (Part III)	5	3	2
Finite element method of two-dimensional second- order equations (Part IV)	5	3	2
Finite element method of two-dimensional time- dependent problems (Part V)	5	3	2
Finite element method of two-dimensional time-	5	3	2

dependent problems (Part VI)			
Finite element method of two-dimensional time-	5	3	2
dependent problems (Part VII)			
Finite element method of two-dimensional time-	5	3	2
dependent problems (Part VIII)			
Finite element method of two-dimensional time-	5	3	2
dependent problems (Part IX)			
Finite element method of two-dimensional time-	5	3	2
dependent problems (Revision)			

4. Teaching and Learning Methods:

- 4.1- Lectures
- 4.2- Class Activities(assignments)

5. Student Assessment Methods:

5.1- Assignments	to assess	progress on students' learning, effectiveness of	
		course materials, and approaches to instruction	
5.2- Mid-Term exam	to assess	level of knowledge acquisition and concepts	
		understanding that can be used as a feedback	
		for enhancing the learning process	
5.3- Oral exam	to assess	communication of technical information that demonstrate scientific understanding	
5.4- Term Final exam	n to assess	level of mastery of the concepts, algorithms,	
nd problem solving techniques learned in the source			

and problem solving techniques learned in the course