

Computational Geometry Course Specifications

Faculty: Computer and Informatics **Department:** Scientific Computing

Program (s) on which the course is given	:	Bachelor in Computer & Information Sciences
Major or Minor element of programs	:	Scientific Computing
Department offering the program	:	Scientific Computing
Department offering the course	:	Scientific Computing
Academic year / Level	:	4 th Year/ B.Sc.
Date of specification approval	:	15/3/2010

A. Basic Information

Title: Computational Geometry	Code: SCC 437	
Lecture: 3 hrs/week	Practical: 2 hrs/week	Tutorial:
Credit Hours:	Total: 5 hrs/week	

B. Professional Information

1. Overall Aims of Course:

This course introduces students to computational geometry. Upon completion of this course, students will have Good-knowledge of computational geometry topics like Line-segment intersection, segment-segment intersection, Voronoi diagram, Delaunay triangulation, Motion Planning, etc. Graduates will be able to design efficient algorithms for topics in computational geometry.

2. Intended Learning Outcomes of Course (ILOs):

a- Knowledge and Understanding:

- al- State Basics of Computational Geometry.
- a2- Explain Line segment intersection.
- a3- Explain Segment-segment intersection.
- a4- Explain Visibility graph.
- a5- Explain Voronoi-Diagrams.
- a6- State Delaunay triangulations.
- a7- Explain Motion planning.

b- Intellectual Skills:

- b1- Conclude an efficient algorithm for the given problem.
- b2- Learn how to use systematic steps in the proof of the theories.
- b3- Integrate application of the geometrical algorithms in other scientific area.

c- Professional and Practical Skills:

- c1- Design an effective algorithm for the geometrical problem.
- c2- Write and integrate an effective computer programs for the geometrical algorithm.

d- General and Transferable Skills:

- d1- Understand and the geometrical problem and discuss how to deal with it as a data to be processed.
- d2- Present and Write effective computer programs that employ efficient algorithms.
- d3- Analyze and design algorithms for solving scientific problems related to other disciplines.

e. Attitude:

- e1- A knowledge and respect of ethics and ethical standards in relation to a major area of study.
- e2- Relationship Emphasis a successful with other students.
- e3- Learn how to make relation with other, and the limit of this relation.

3. Contents:

Торіс	No. of	Lecture	Tutorial/
	hours	Lecture	Practical
Design and analysis of efficient geometric algorithms	5	3	2
(Part I)	5	5	2
Design and analysis of efficient geometric algorithms	5	3	2
(Part II)	5	5	2
Intersection (Part I)	5	3	2
Intersection (Part II)	5	3	2
Voronoi Diagrams (Part I)	5	3	2
Voronoi Diagrams (Part II)	5	3	2
Voronoi Diagrams (Part III)	5	3	2
Delaunay Triangulations (Part I)	5	3	2
Delaunay Triangulations (Part II)	5	3	2
Random Sampling (Part I)	5	3	2
Random Sampling (Part II)	5	3	2
Motion Planning(Part I)	5	3	2
Motion Planning(Part II)	5	3	2
Motion Planning: application Revision	5	3	2