

Mathematics 2 Course Specifications

Course Specifications

Program (s) on which the course is given	:	Bachelor in Computer and Information Science	
Major or Minor element of programs	:	All majors	
Department offering the program	:	Computer Science	
Department offering the course	:	Basic Sciences	
Academic year / Level	:	1 st Year / B.Sc.	
Date of specification approval	:		

A. Basic Information

Title: Mathematics 2	Code: BSC 121	
Lectures: 4 hrs/week	Tutorial: 2 hrs/week	Practical:
Credit Hours:	Total: 6 hrs/week	

B. Professional Information

1. Overall Aims of Course:

The aim of the course is to provide an to the Integral Calculus, infinite Series, and ordinary differential equations, and their applications.

2. Intended Learning Outcomes of Course (ILOs):

a. Knowledge and Understanding:

- a1- Give Account on the different methods and rules of integration including finite and improper integrals
- a2- Explain the definition of the limit of a sequence.
- a3- Know how to find the limit of a wide class of sequences.
- a4- State the convergence or divergence of a wide class of series.
- a5- Know that a power series has a radius of convergence, and to know how to find it.
- a6- State the methods of solving different classes of ordinary differential equations and their applications.

b. Intellectual Skills:

- b1- Analyze and apply the methods of integration, series summations and tests of convergence
- b2- Criticize appropriate techniques to solve ordinary differential equations

c. Professional and Practical Skills:

c1- Handle and use techniques of integration, infinite Series, and ordinary differential equations in solving practical problems

d. General and Transferable Skills:

- d1-Manage time effectively.
- d2-Present a clear, logical argument.
- d3-Work independently.

e. Attitude:

e1- A knowledge and respect of ethics

and ethical standards in relation to a major area of study.

e2- Illustrate the use of example, analogy, and counter-analogy in ethical argument.

3. Contents:

Торіс	No of house	Lecture	Tutorial/
	No. of nours		Practical
Revision of techniques of integration: Integration by	6	1	r
parts, trigonometric integrals and substitutions	0	4	2
Improper integrals	6	4	2
Application of the definite integral: Areas in			
rectangular coordinates, Areas in polar coordinates,	6	4	2
other applications in geometry and physics I			
Application of the definite integral: Areas in			
rectangular coordinates, Areas in polar coordinates,	6	4	2
other applications in geometry and physics II			
Infinite series: Sequences, convergent or divergent			
series, positive-term series (basic comparison test,	6	4	2
limit comparison test, ratio and root tests I			
Infinite series: Sequences, convergent or divergent			
series, positive-term series (basic comparison test,	6	4	2
limit comparison test, ratio and root tests II			
Alternating series and absolute convergence, power			
series, power series representations of functions,	6	4	2
Maclaurin and Taylor series, applications of Taylor	U		
polynomials. I			

Alternating series and absolute convergence, power series, power series representations of functions.		4	2
Maclaurin and Taylor series, applications of Taylor	6		
polynomials. II			
Differential equations: Definition, classifications			
and terminology, techniques of solution of ordinary	6	4	2
first-order first-degree differential equations I			
Differential equations: Definition, classifications			
and terminology, techniques of solution of ordinary	6	4	2
first-order first-degree differential equations II			
Separable, reducible to separable, homogeneous,			
reducible to homogeneous, linear, reducible to	6	Л	2
linear, exact differential, nonexact	0	4	2
differential-integrating factor, applications I			
Separable, reducible to separable, homogeneous,			
reducible to homogeneous, linear, reducible to	6	4	2
linear, exact differential, nonexact			
differential-integrating factor, applications II			