

Formal Languages and Automata Course Specifications

Faculty: Computer and Informatics				
Department: Computer Science				
Program (s) on which the course is given:		Bachelor in Computer and		
Information Sciences				
Major or Minor element of programs	:	All majors		
Department offering the program	:	Computer Science		
Department offering the course	:	Computer Science		
Academic year / Level	:	3rd year / B Sc		
Date of specification approval	:	4/10/2009		

A-Basic Information

Title: Formal Languages and Automata	Code: CSC 341
Lectures: 3 hrs/week	Practical:
Tutorial: 2 hrs/week	Credit Hours:
Total: 5 hrs/week	

B- Professional Information

1. Overall Aims of Course:

The aims of the course are:

- 1. To give an understanding of the basic theory formal languages and automata.
- 2. To introduce the types of formal grammars.
- 3. To study the relations between automata, languages and grammars.
- 4. To give some applications to compilers.

2. Intended Learning Outcomes of Course (ILOs):

a. Knowledge and Understanding

- a1- List the basic models of computation such as DFA, NFA, PDA and TM.
- a2- Understand the languages recognized by those models of computation.
- a3- Understand the concepts of Automata, and Formal Languages.
- a4- Understand the relationships between the grammars and abstract machines and Expressions.
- a5- Understand the properties and theorms on languages.
- a6- Identify and follow basic mathematical arguments couched in terms of abstract models.

b. Intellectual Skills

- b1- Determine the type of a formal language by using the grammar tools.
- b2- Use regular expressions to analyze regular languages.
- b3- Use context free grammar to analyze context free languages .
- b4- Analyze whether a language is or isn't regular or context-free.
- b5- Construct simple parsers (Top down and Bottom up)and prove the grammar

is ambiguous or not.

c. Professional and Practical Skills:

c1- Inject abstract concepts.

d. General and Transferable Skills:

d1- Presenting any real life problem as state machine which are useful in determining whether the given problem can be solved on computer or not.

e. Attitude:

- e1. A knowledge and respect of ethics and ethical standards in relation to a major area of study.
- e2. Relationship Emphasis a successful with other students.
- e3. Learn how to make relation with other, and the limit of this relation.

3. Contents:

Торіс	No. of	Lecture	Tutorial/
	hours		Practical
Alphabets, languages, grammars	5	3	2
Regular expressions and regular languages	5	3	2
Finite state automata (DFA, NFA)	5	3	2
Transforming NFA into DFA	5	3	2
Regular expressions and NFA	5	3	2
Regular grammars and NFA	5	3	2
Minimum state DFA, Kleene Theorem	5	3	2
Non –regular languages, the pumping	5	3	2
lemma			
Homomorphisms of Languages	5	3	2
FA with output ,Applications			
CF-LANGUAGES and CF- grammars	5	3	2
Pushdown automata PDA	5	3	2
CF-GRAMMARS and PDA	5	3	2
Non-CF-LANGUAGES	5	3	2
The Turing Machine Model TM	5	3	2