

Benha University

Faculty of Computers & Informatics

1st Term (December 2013) Final Exam
Class: 4th Year Students (IS)
Subject: Management Information System

 Date: 26 / 12 /2013
Time: 3 Hours
Examiner: Dr. Sahar Fawzy

Question One
1- "While they won't displace traditional RDBMSs, the easy scalability and

programmability of NoSQL databases guarantees them a permanent place in

the data center." in the sight of this statement, answer the following:

a) What is Wrong with RDBMS?
 For the longest time (and still true today), the big relational database vendors such as

Oracle, IBM, Sybase, and a lesser extent Microsoft were the mainstay of how data was

stored.

 During the Internet boom, startups looking for low-cost RDBMS alternatives turned to

MySQL and PostgreSQL.

 Hooking your RDBMS to a web-based application was a recipe for headaches, they are

OLTP in nature. Could have hundreds of thousands of visitors in a short-time span.

 To mitigate, began to front the RDBMS with a read-only cache such as memcache to

offload a considerable amount of the read traffic.

 As datasets grew, the simple memcache/MySQL model (for lower-cost startups) started

to become problematic.

 Nothing. One size fits all? Not really.

 Impedance mismatch.

 Object Relational Mapping doesn't work quite well.

 Rigid schema design.

 Joins across multiple nodes? Hard.

 How does RDMS handle data growth? Hard.

 Need for a DBA.

 ACID limits scaling.

 RDBMS were not designed to be distributed, Began to look at multi-node database

solutions Known as ‘scaling out’ or ‘horizontal scaling’ Different approaches include:

 Master-slave & Sharding

b) Show How BASE is an Opposed to ACID.
 IN Cloud computing: ACID is hard to achieve, moreover, it is not always required, e.g.

for blogs, status updates, product listings, etc.

 Availability

 Traditionally, thought of as the server/process available 99.999 % of time

 For a large-scale node system, there is a high probability that a node is either

down or that there is a network partitioning

 Partition tolerance ensures that write and read operations are redirected to available

replicas when segments of the network become disconnected

 Eventual Consistency

 When no updates occur for a long period of time, eventually all updates will

propagate through the system and all the nodes will be consistent

 For a given accepted update and a given node, eventually either the update

reaches the node or the node is removed from service

 BASE (Basically Available, Soft state, Eventual consistency) properties, as opposed to

ACID

 Soft state: copies of a data item may be inconsistent

 Eventually Consistent – copies becomes consistent at some later time if

there are no more updates to that data item

 Basically Available – possibilities of faults but not a fault of the whole

system

c) “MongoDB is an example of document based databases that has a

flexible schema" Show with examples how MongoDB can be used to

model tree structures.
 Consider the following example that keeps a library book and its checkout information.

The example illustrates how embedding fields related to an atomic update within the

same document ensures that the fields are in sync.

Consider the following book document that stores the number of available copies for

checkout and the current checkout information:

book = {

 _id: 123456789,

 title: "MongoDB: The Definitive Guide",

 author: ["Kristina Chodorow", "Mike Dirolf"],

 published_date: ISODate("2010-09-24"),

 pages: 216,

 language: "English",

 publisher_id: "oreilly",

 available: 3,

 checkout: [{ by: "joe", date: ISODate("2012-10-15") }]

 }

You can use the db.collection.findAndModify() method to atomically determine if a book is

available for checkout and update with the new checkout information. Embedding the

available field and the checkout field within the same document ensures that the updates to

these fields are in sync:

db.books.findAndModify ({

 query: {

 _id: 123456789,

 available: { $gt: 0 }

 },

 update: {

 $inc: { available: -1 },

 $push: { checkout:

 { by: "abc", date: new Date() } } }})

 The Child References pattern stores each tree node in a document; in addition to the tree

node, document stores in an array the id(s) of the node’s children.

http://docs.mongodb.org/manual/reference/method/db.collection.findAndModify/
http://docs.mongodb.org/manual/reference/method/db.collection.findAndModify/

 Consider the following example that models a tree of categories using Child References:

db.categories.insert({ _id: "MongoDB", children: [] })

db.categories.insert({ _id: "Postgres", children: [] })

db.categories.insert({ _id: "Databases", children: ["MongoDB", "Postgres"] })

db.categories.insert({ _id: "Languages", children: [] })

db.categories.insert({ _id: "Programming", children: ["Databases", "Languages"] })

db.categories.insert({ _id: "Books", children: ["Programming"] })

The query to retrieve the immediate children of a node is fast and straightforward:

db.categories.findOne({ _id: "Databases" }).children

You can create an index on the field children to enable fast search by the child nodes:

db.categories.ensureIndex({ children: 1 })

You can query for a node in the children field to find its parent node as well as its

siblings:

db.categories.find({ children: "MongoDB" })

The Child References pattern provides a suitable solution to tree storage as long as no

operations on subtrees are necessary. This pattern may also provide a suitable solution

for storing graphs where a node may have multiple parents.

2- Discuss briefly the steps of query cycle, showing the role of query parser, analyzer

and optimizer.

3- In some companies, we usually see some levels of managements, name these

levels showing the basic types of Is to support each of them.

4- write Relational Algebra expressions (not SQL) for the following queries with

respect to the database below (primary key attributes are boldfaced and

underlined:

D: (DEPT DNAME BUDGET) fordepartments

T: (T# TNAME CITYDEPT) forteachers

S: (S# SNAME CITY DEPT DEGREE) for students

C: (C# CNAME DEPT T#) for courses

E: (S# C# GRADE) forenrollments

Note: Here ECE, CSCare values of the attribute "DEPT" rather than "DNAME".

a- Get S#, SNAME for Baton Rougestudents from CSCdepartment.

Answer:

S#, SNAME(CITY Baton RougeDEPT CS C(S))

Alternatively:

S#, SNAME(CITY Baton Rouge(S)) S#, SNAME(DEPT CS C(S))

b- Get S#, C# pairs for students and courses such that the student is enrolled in the course

with a grade 80.

Answer:

S#,C#(GRADE80(E))

c- Get C#, Cname for courses which are taken by a student from ECEdepartment.

Answer:

R1 E JOIN (DEPT EC E(S)) JOIN (C#, CNAME(C))

result = C#,CNAME(R1)

Note: here I am using the word "JOIN" to denote the natural join operator

d- Get S# for students who are either from New Orleansor taking the course (C#=) C4(or

both).

Answer:

S#(CITY New Orleans(S)) S#(C# C4(E))

e- get S#, T# pairs such that the student and the teacher are from the same department and

the student takes a course taught by the teacher.

Answer:

S#, T#(S JOIN (T#, DEPT(T))) S#, T#(E JOIN C)

Question Two:

1- Explain with examples the use two phase locking protocols to solve each of
the concurrency problems.

 A transaction follows the two-phase locking protocol (2PL) if all locking

operations precede the first unlock operation in the transaction. Two

phases

a) Growing phase where locks are acquired on resources

b) Shrinking phase where locks are released

Lost update cannot happen as follows:

Uncommitted update cannot happen

Inconsistent analysis cannot happen as well

2- Produce a wait-for-graph for the following transaction scenario and
determine whether deadlock

3- Classify the following relations as either UNNORMALISED, 1NF, 2NF or 3NF.

If the relation is not in 3NF, normalise the relation to 3NF.
a. EMPLOYEE(empno,empname,jobcode)

empno -> empname

empno -> jobcode

 3rd
 NF

b. EMPLOYEE(empno,empname,(jobcode,years))

empno -> empname

empno,jobcode -> years

 Unnormalized.

 Employee(Empno , empname), employeeJob(Empno,jobcode,years)

c. EMPLOYEE(empno,empname,jobcode,jobdesc)

empno -> empname,jobcode

jobcode -> jobdesc

 Relation is in 2
nd

 NF

 Employee(empno,empname,jobcode) & jobs(jobcode , Jobdesc)

d. EMPLOYEE(empno,empname,project,hoursworked)

empno -> empname

empno,project -> hoursworked

 Relation is in 1
st
 Nf as there exist partial dependency

 Employee(empno,empname) & EmployeeProject(empno,project,hoursworked)

4- Identify any repeating groups and functional dependences in the PATIENT
relation. Show all the intermediate steps to derive the third normal form for
PATIENT.
PATIENT(patno,patname,gpno,gpname,appdate,consultant,conaddr,sample)

patno patname gpno gpname appdate consultant conaddr sample

01027 Grist 919 Robinson

3/9/2004 Farnes Acadia Rd blood

20/12/2004 Farnes Acadia Rd none

10/10/2004 Edwards Beech Ave urine

08023 Daniels 818 Seymour
3/9/2004 Farnes Acadia Rd none

3/9/2004 Russ Fir St sputum

191146 Falken 717 Ibbotson 4/10/2004 Russ Fir St blood

001239 Burgess 818 Seymour 5/6/2004 Russ Fir St sputum

007249 Lynch 717 Ibbotson 9/11/2004 Edwards Beach Ave none

 1st
 Nf: Patient (patno, patname, gpno, gpname) & Appt (patno, appdate,

consultant, conaddr, sample)

 2nd
 NF: Patient (patno, patname, gpno, gpname) & Appt (patno, appdate,

consultant, sample) & Consultant (consultant, conaddr)

 3rd
 Nf: Patient (patno, patname, gpno)& GP (gpno, gpname) & App (patno,

appdate, consultant, sample) & Consultant (consultant, conaddr)

Best Wishes & Good Luck

Dr. Sahar

