

Benha University Final Exam Class: 4th Year (information System) Subject: Crisi Management **Faculty of Computers & Informatics**

Date: 9/6 /2013 Time: 3 hours Examiner: Dr. Sahar Fawzy

Question One

1- Given the following access characteristics and access frequencies for Q1,...,Q4, calculate the optimal vertical splitting using the Bond Energy Algorithm (BEA),

Steps:

a. Prepare an affinity matrix.

b. Apply BEA algorithm.

c. Perform vertical splitting by maximizing the split quality.

	Name	Family	Age	Position	Location
Q1	1	1	1	0	0
Q2	0	0	1	1	0
Q3	0	1	0	1	1
Q4	0	0	1	0	1

	Site A	Site B	Site C
Q1	20	1	0
Q2	10	5	9
Q3	80	1	9
Q4	2	5	4

➔ solution

A1	A2	A3	A	4 A5
21	21	21	0	0
21	111	21	90	90
21	21	56	24	11
0	90	24	114	90
0	90	11	90	101
	21 21 21 0	$\begin{array}{ccc} 21 & 21 \\ 21 & 111 \\ 21 & 21 \\ 0 & 90 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1 A2 A3 A4 21 21 21 0 21 111 21 90 21 21 56 24 0 90 24 114 0 90 11 90

Place attributes:

place A1

contribution at pos 0 = 2121contribution at pos 1 = -1598contribution at pos 2 = 2058attribute A1 is placed at pos 0: [A1, A5, A3] **place A2**

```
contribution at pos 0 = 3213
contribution at pos 1 = 28503
contribution at pos 2 = 28732
contribution at pos 3 = 7098
attribute A2 is placed at pos 2: [A1, A5, A2, A3]
place A4
contribution at pos 0 = 2394
contribution at pos 1 = 27987
contribution at pos 2 = 29157
contribution at pos 3 = 28716
contribution at pos 4 = 6960
attribute A4 is placed at pos 2: [A1, A5, A4, A2, A3]
resulting order: [A1, A5, A4, A2, A3]
find fragments:
split at [A1, A2, A3, A4] | [A5]
accesses frag1 alone: 45
accesses frag2 alone: 0
accesses frag1 and frag2: 101
split quality = -10201
split at [A1, A2, A3] | [A4, A5]
accesses frag1 alone: 21
accesses frag2 alone: 0
accesses frag1 and frag2: 125
split quality = -15625
split at [A1, A3] | [A2, A4, A5]
accesses frag1 alone: 0
accesses frag2 alone: 90
accesses frag1 and frag2: 56
split quality = -3136
split at [A1] | [A2, A3, A4, A5]
accesses frag1 alone: 0
accesses frag2 alone: 125
accesses frag1 and frag2: 21
split quality = -441
split at [A1, A2, A3, A5] | [A4]
accesses frag1 alone: 32
accesses frag2 alone: 0
accesses frag1 and frag2: 114
split quality = -12996
split at [A1, A3, A5] | [A2, A4]
```

```
accesses frag1 alone: 11
accesses frag2 alone: 0
accesses frag1 and frag2: 135
split quality = -18225
split at [A1, A5] | [A2, A3, A4]
accesses frag1 alone: 0
accesses frag2 alone: 24
accesses frag1 and frag2: 122
split quality = -14884
split at [A1, A3, A4, A5] | [A2]
accesses frag1 alone: 35
accesses frag2 alone: 0
accesses frag1 and frag2: 111
split quality = -12321
split at [A1, A4, A5] | [A2, A3]
accesses frag1 alone: 0
accesses frag2 alone: 0
accesses frag1 and frag2: 146
split quality = -21316
split at [A1, A2, A4, A5] | [A3]
accesses frag1 alone: 90
accesses frag2 alone: 0
accesses frag1 and frag2: 56
split quality = -3136
optimal split(s) (sq = -441):
```

[A1] | [A2, A3, A4, A5]
 2- "Fault-tolerant systems - ideally systems capable of executing their tasks correctly regardless of either hardware failures or software errors" in the

context of this statement discuss:

a. Strategies to Handle Faults

➔ Fault avoidance

Techniques aim to prevent faults from entering the system during design stage.

➔ Fault removal

Methods attempt to find faults within a system before it enters service

➔ Fault detection

Techniques used during service to detect faults within the operational system

➔ Fault tolerant

Techniques designed to tolerant faults, i.e. to allow the system operate correctly in the presence of faults.

b. Fault Tolerance Measures

- → Fault tolerance is related to dependability which Includes
 - Reliability

Reliability, R(t): – property that a system can run without failure, for a given time.

Related measure - Mean Time To Failure, MTTF :

Average time the system remains up before it goes down and has to be repaired or replaced

- Availability: availability is used in systems with recovery/repair
 - Related measures:
 - Mean Time To Repair, MTTR
 - Mean Time Between Failures, MTBF = MTTF + MTTR
- **Safety:** A measurement of *how safe failures are*
 - System fails, nothing serious happens
 - For instance, high degree of safety is required for systems controlling nuclear power plants
- Maintainability: A measurement of how easy it is to repair a system
 - A highly maintainable system may also show a high degree of availability
 - Failures can be detected and repaired automatically? Selfhealing systems?
- 3- What's data replication and why is replication? *Explain briefly* replication strategies?
 - → Replication is a common strategy in data management: RAID technology Redundant Array of Independent Disks) and Mirror sites for web pages.
 - → Why replication?
 - a) PERFORMANCE: Location transparency is difficult to achieve in a distributed environment. If everything is local, then all accesses should be fast.
 - b) FAULT TOLERANCE: Failure resilience is also difficult to achieve. If a site fails, the data it contains becomes unavailable. By keeping
 - c) APPLICATION TYPE: Databases have always tried to separate queries form updates to avoid interference. This leads to two different

Replication Strategies

	Primary copy	Update everywhere
Asynchronous	Advantages: No coordination necessary Short response times Disadvantages: Local copies are not up to date Inconsistencies	Advantages: No centralized coordination Shortest response times Disadvantages: Inconsistencies Updates can be lost (reconciliation)
Synchronous	Advantages: Updates do not need to be coordinated No inconsistencies Disadvantages: Longest response time Only useful with few updates Local copies are can only be read	Advantages: No inconsistencies Elegant (symmetrical solution) Disadvantages: Long response times Updates need to be coordinated

4- A 12-bit hamming code word containing 8 bits of data and 4 parity bits is. what's the original data if the code word is:
i. 010101100011

1	2	3	4	5	6	7	8	9	10	11	12
0	1	0	1	0	1	1	0	0	0	1	1
	→ C	1 = XOI	R(1,3,5)	,7,9,11)	= XOR	(0,0,0,1	1,0,1)=0				
	→ C	2 = XO	R (2,3	, 6,7, 1	0,11)=	XOR(1	,0,1,1,0	(1)=0			
			• ·		. ,	1,0,1,1,					
					,),1,1)=()			
Mess		correc		, ,	,						
1.2000	0	11111(0							
1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	0	0	0	1	1	0	0
	→ C	1 = XOI	R(1.3.5	.7.9.11)	= XOR	(1.1.1.0),1,0)=0				
				,			,1,0,0,1				
			• ·		. ,	,1,0,0,0		<i>,</i> - <i>,</i>			
			())	,		R(0,1,1,	,				
Error	at 2^{nd} b				,		0,0) 0				
		000010	00101	0							
1	2	3	4	5	6	7	8	9	10	11	12
Ō	0	0	0	1	Õ	Ô	Õ	1	0	1	0
Ū	→ C	•	R(1.3.5	7.9.11)	= XOR	(0,0,1,0	(0,1,1) =	1	Ū	-	Ũ
				,),0,0,0,0				
			• ·		. ,	0,1,0,0,		,,,,,			
				,			,)			
→ $C8 = XOR(8,9,10,11,12) = XOR(0,1,0,1,0) = 0$ Error at the 7 th bit											

Question Two

- **1.** What's token passing protocol? How can this protocol work assuming different types of failures can occur.
 - → † The token based protocol is used as an example of replication in distributed systems to illustrate the problems of fault-tolerance and starvation.
 - → Failures:
 - If communication failures occur, the token may disappear while in transit (message is lost).
 - First, the loss of the token must be detected
 - Second, the token must be regenerated
 - Third, after the regeneration, there must be only one token in the system (only one master copy)
 - To do this, logical clocks are used:
 - OwnerTime(s) is a logical clock associated with the token, it indicates when sites sent or received the token
 - TokenState(s) is the state of the shared resource (values associated with the token itself)

2. What's software testing? What are the causes of software faults? Software testing is executing software in a simulated or real environment, using inputs selected somehow. The main causes of software faults are:

Requirements analysis		Incorrect, missing, or unclear requirements Incorrect or unclear translation
System design		Incorrect or unclear design specification
Program design	*	Incorrect or unclear design specification Misinterpretation of system design
Program implementation		Misinterpretation of program design Incorrect documentation Incorrect syntax or semantics
Unit/ integration testing	↓	Incomplete test procedures New faults introduced when old ones corrected
System testing	J	Incomplete test procedures
Maintenance	• •••••••••••••••••••••••••••••••••••	Incorrect user documentation Poor human factors New faults introduced when old one corrected Changes in requirements

3. Obtain the CRC code word for the data bit sequence 00101100010101110100011 (left most bit is the least significant) using the generator polynomial x⁵ + x² + 1. For the resulted codeword show the steps performed by the receiver to check message correctness. M = 00101100010101110100011 k=100101

```
100101 100101100010101110100011
          100101
          _____
          00100101
            100101
            ____
            000000101110
                   100101
                   _____
                   00101110
                     100101
                     _____
                     00101100
                       100101
                       _____
                       00100111
                         100101
                         _____
                            000010
                                     remainder = message is incorrect
```

4. Suppose the following block of 16 bit is to be sent, using checksum of 8 bit (10001001-11110000 -001111100-10100001) what will be the sent message?

1 0 0 0 1 0 0 1	W1
1 1 1 1 0 0 0 0	W2
101111001	Normal sum
1	Carry
0 1 1 1 1 0 1 0	1's Comp sum W1, W2
0 0 1 1 1 1 0 0	W3
10110110	1's Comp sum W1, W2, W3
10100001	W4
101011001	Normal sum
1	Carry
01011010 10100101	1's Comp sum W1, W2, W3, W4 complement = checksum of W1-W4

Best Wishes & Good Luck Dr. Sahar