Banha UniversitySecond Term 2012/2013Faculty of Computers and InformaticsFirst Year GeneralSolution of Questions For The Term ExaminationSubject: Electronics (Regular)Allowed Time: 3 Hours

Answer all questions. No. of questions: 5 No. of pages: 3

### Solution to Question 1

**a)**Calculate  $I_1$ ,  $I_2$ ,  $I_L$ ,  $V_{BG}$ ,  $V_{AG}$  when (i)  $S_1$  is open, (ii)  $S_2$  is closed.



### <u>Answer</u>

(i) When S<sub>1</sub> open,

$$I_L = 0$$

 $R_1$  and  $R_2$  are in series,  $R_T$  =  $R_1$  +  $R_2$  = 40 +120 = 160  $\Omega$ 

 $I_1 = I_2 = 24/160 = 0.15 \text{ A}$   $V_{BG} = I_2 R_2 = 0.15*120 = 18 \text{ V}$  $V_{AG} = V_T = 24 \text{ V}$ 

(ii) When S<sub>2</sub> is closed,

$$R_{L2} = R_L / / R_2 = (60)(120) / (60+120) = 40 \Omega$$

$$R_{T} = R_{1} + R_{L2} = 40 + 40 = 80 \ \Omega$$

$$I_T = I_1 = 24/80 = 0.3 A$$

By current divider rule,

$$I_2 = (0.3)^*(60)/(60+120) = 0.1 A$$

$$I_L = (0.3)^*(120)/(60+120) = 0.2 A$$

 $V_{BG} = I_2 R_2 = 0.1*120 = 12 V$ 

 $V_{AG} = V_T = 24 V$ 

**b)** Find the value of  $R_{L}$  for maximum power transfer in circuit shown. What is this maximum power?



### <u>Answer</u>

Using the conversion from Norton equivalent circuit to thevenin equivalent circuit,

For current source  $I_1$  and resistance  $R_1$  cnovert to,

 $V_{th1} = I_1 R_1 = 2*6 = 12 V$   $R_{th1} = R_1 = 6 \Omega$ 

 $V_{th2} = I_2 R_2 = 1*18 = 18 \text{ V} \qquad R_{th2} = R_2 = 18 \Omega$ 

The total equivalent circuit consists of a battery of voltage,

 $V = V_{th1} + V_{th2} = 12 + 18 = 30 V$ 

in series with a resistance  $R = R_{th1} + R_{th2} = 6 + 18 = 24 V$ 

in series with  $R_L$ .

For maximum power transfer,  $R_L = R = 24 V$ 

The maximum power  $P_{max} = V^2/4R = (30)^2/(4)(24) = 9.375 W$ 

## Solution to Question 2

**a)** Find the capacitor voltage  $V_C(t)$  and the resistor voltage  $V_R(t)$  for the circuit shown in figure. Plot these quantities.



# <u>Answer</u>

The time constant  $\tau = RC = (2k)^*(0.1\mu) = 0.2 \text{ ms} = 200 \text{ }\mu\text{s}$ For  $0 \le t \le 200 \text{ }\mu\text{s}$ , the capacitor is charging.

$$V_{C}(0) = 0$$
  

$$V_{C}(200\mu s) = 20(1 - e^{-200/200}) = 12.64 V$$
  

$$V_{R}(0) = 20 V$$
  

$$V_{R}(200\mu s) = 20 e^{-200/200} = 7.36 V$$

For 200  $\mu$ s  $\leq$  t  $\leq$  400  $\mu$ s, the capacitor is discharging.

$$V_{C}(200\mu s) = 12.6 V$$
  
 $V_{C}(400\mu s) = 12.6 e^{-200/200} = 4.64 V$   
 $V_{R}(200\mu s) = -12.6 V$   
 $V_{R}(400\mu s) = -12.6 e^{-200/200} = -4.64 V$ 

For 400  $\mu$ s  $\leq$  t  $\leq$  600  $\mu$ s, the capacitor is charging.

$$V_{C}(400\mu s) = 4.64 V$$

$$V_{C}(600\mu s) = 4.64 + (20 - 4.64)(1 - e^{-200/200}) = 14.35 V$$

$$V_{R}(400\mu s) = 20 - 4.64 = 15.36$$

$$V_{R}(600\mu s) = 15.36 e^{-200/200} = 5.65 V$$

For 600  $\mu s$   $\leq$  t  $\leq$  800  $\mu s,$  the capacitor is discharging.

$$V_{C}(600 \mu s) = 14.35 V$$
  
 $V_{C}(800 \mu s) = 14.35 e^{-200/200} = 5.28 V$ 

$$V_R(600\mu s) = -14.35 V$$
  
 $V_R(800\mu s0 = -14.35e^{-200/200} = -5.28 V$ 

**b)** For the phase shifter shown, what is the phase shift between  $V_T$  and  $V_R$  and between  $V_T$  and  $V_C$ . Draw the voltage phasor diagram with  $V_T$  as reference voltage.



### <u>Answer</u>

 $X_{C} = 1/2\pi fC = 1/2\pi (60)(0.1 \times 10^{-6}) = 26.53 \text{ k}\Omega$ 

The phase angle between  $V_T$  and  $V_R$  is  $\phi,$ 

 $\tan \varphi = X_C/R = -26.53k/400k = 0.06633$ 

 $\varphi = 3.8^{\circ}$ 

The phase angle between  $V_T$  and  $V_c$  is  $\theta$ ,

$$\tan \theta = -R/X_{C} = -400k/26.53k = -15.08$$

 $\theta = -86.21^{\circ}$ 

### **Solution toQuestion 3**

**a)** For the RLC circuit at resonance, find  $f_r$ , Z, I,  $V_C$  and  $V_L$  at  $f_r$ ,  $V_R$ , quality factor and bandwidth.



### <u>Answer</u>

The RLC circuit at resonance,

$$f_{r} = 1/2\pi\sqrt{LC} = 1/2\pi\sqrt{(50\times10^{-6})(56.3\times10^{-12})}$$
  
= 3x10<sup>6</sup> Hz = 3 MHz  
$$Z = R = 18.85 \Omega$$
$$I = V/Z = V/R = 50\mu/18.85 = 2.65 \mu A$$
$$V_{C} = IX_{C} = I/2\pi f_{r}C = 2.65\times10^{-6}/2\pi(3\times10^{6})(56.3\times10^{-12})$$
  
= 2.5x10<sup>-3</sup> V = 2.5 mV  
$$V_{L} = IX_{L} = I^{*}(2\pi f_{r}L) = (2.65\times10^{-6})^{*}(2\pi^{*}3\times10^{6}\times50\times10^{-6})$$
  
= 2.5x10<sup>-3</sup> V = 2.5 mV  
$$V_{R} = V_{in} = 50 \mu V$$
$$Q = X_{L}/R = 2\pi f_{r}L/R = 2\pi (3\times10^{6})^{*}(50\times10^{-6})/18.85$$
  
= 50  
Bandwidth = f\_{r}/Q = 3\times10^{6}/50 = 60\times10^{3} Hz = 60 kHz

**b)** The diode in the circuit shown in Figure has a reverse-saturation current. Determine the diode voltage and current if (i) the diode is ideal (ii) real diode with internal resistance of 500  $\Omega$ .



### <u>Answer</u>

By Thevenin theorm,

$$R_{th} = R_1 / / R_2 = 50*30 / (50+30) = 18.75 \text{ k}\Omega$$

 $V_{th} = 12*30/(50+30) = 4.5 V$ 

(i) The diode is ideal. It is represented as closed switch.

$$V_D = 0$$

 $I_D = 4.5/18.75 = 0.24 A$ 

(ii) Real diode with internal resistance of 500  $\Omega$ ,

Applying KVL:  $-4.5 + 18.75k I_D + 0.7 + 500 I_D = 0$  $I_D = (4.5 - 0.7)/(18.75k+500) = 0.197 \text{ mA}$  $V_D = 0.7 + (500)(0.197\text{m}) = 0.7985 \text{ V}$ 

## Solution to Question 4

**a)** Find I<sub>B</sub>, I<sub>C</sub>, I<sub>E</sub> and V<sub>CE</sub> in the transistor circuit shown in figure. V<sub>BEon</sub> = 0.7 V



### **Answer**

Applying KVL to the base circuit:

- 5 + 56k  $I_B$  + 0.7 = 0  $I_B = (5 - 0.7)/56k = 0.0768 \text{ mA}$   $I_C = \beta I_B = 100*0.0768m = 7.68 \text{ mA}$  $I_E = I_C + I_B = 7.68m + 0.0768m = 7.7568 \text{ mA}$ 

Applying KVL to the collector circuit:

**b)** Find the output voltage  $V_{out}$  for each of the following operational amplifier circuits.



The circuit is inverting operational amplifier.

The gain,

 $A = R_F/R_i = 15k/1.2k = 12.5$ 

 $V_{out} = A V_{in} = (12.5)^*(1V_{p-p}) = 12.5 V_{p-p}$ 



The circuit is a summing operational amplifier,

$$v_{out} = R_F/R_1 V_1 + R_F/R_2 V_2$$
  
= (5/2)(-3) + (5/1)(1.5)  
= - 4.167 V

## Solution to Question 5

**a)** Draw the half-wave rectifier circuit  $V_S$ ,  $V_{outp}$ ,  $V_{dc}$ ,  $I_L$ ,  $I_{diode}$ , PIV to rectify AC voltage of 220 V, 50 Hz. The transformer ratio is 8:1 and  $R_L = 100 \Omega$ . Use second approximation for diode. If a 1000  $\mu$ F capacitor is added to the output, calculate  $V_{ripple}$ ,  $V_{dc}$ ,  $I_L$ , PIV.

## <u>Answer</u>



b) Choose the correct answer, **Justify** your choice.

1. A 2.2k $\Omega$  R<sub>1</sub> is in parallel with a 3.3k $\Omega$  R<sub>2</sub>. If these two resistors carry a total current of 7.5 mA, how much is the applied voltage? (a) 16.5 V (b) 24.75 V (c) 9.9 V (d) 41.25 V. Answer  $R = 2.2*3.3/(2.2+3.3) = 1.32 k\Omega$  V = IR = (7.5m)\*(1.32k) = 9.9 V2. A sine wave whose rms voltage is 25.2 V has a peak value of ...... (a) 17.8 V (b) 16 V (c) 50.4 V (d) 35.6 V

**Answer** 

 $V_{peak} = 25.2\sqrt{2} = 36.6 V$ 

3. An RC low-pass filter uses a 2.2 k $\Omega$  resistor and a 0.01  $\mu$ F capacitor. What is its cutoff frequency? (a) 3.5 MHz. (b) 72.3 Hz. (c) 7.23 kHz. (d) 1.59 kHz. <u>Answer</u>

$$f_{cutoff} = 1/2\pi RC = 1/2\pi (2.2k)(0.01\mu)$$
  
= 7.23x10<sup>3</sup>Hz = 7.23 kHz

4. In a p-type semiconductor, the majority current carriers are ..... (a) free electrons. (b) valence electrons. (c) protons. (d) holes. Answer

The p-type semiconductor is doped with trivalent impurity atoms as Boron. The valence electrons of Boron are bonded to silicon atoms leaving one missing bond that serves as a hole. So the number of holes are increased without increasing the number of electrons.

5. What is the dc output voltage of an unfiltered half-wave rectifier whose peak output voltage is 9.8 V?

<u>(a) 6.23 V.</u> (b) 19.6 V. (c) 9.8 V. (d) 3.1 V. Answer

 $V_{dc} = 9.8 \times 0.636 = 6.23 V$ 

6. A bipolar junction transistor has ..... (a) only one *p-n* junction. (b) three *p*-*n* junctions. (c) no *p-n* junctions. (d) two *p-n* junctions.

## Answer

The bipolar junction transistor consists of three regions: Emitter, Base and Collector. There is a junction between each two regions. So there are two junctions: one between emitter and base and the other between Base and collector.

7. A noninverting amplifier has  $R_F = 15 \text{ k}\Omega$  and  $R_i = 1.2 \text{ k}\Omega$ . How much is its voltage gain?

(a) 12.5. (c) 13.5. (d) 9. <u>(b) 12.5.</u> <u>Answer</u>

 $A = R_F/R_i = 15/1.2 = 12.5$