Banha University
Faculty of Computers and Informatics

Second Term 2012/2013
First Year General
Solution of Questions For The Term Examination
Subject: Electronics (Regular)
Allowed Time: 3 Hours

Answer all questions.
No. of questions: $5 \quad$ No. of pages: 3

Solution to Question 1

a)Calculate $I_{1}, I_{2}, I_{L}, V_{B G}, V_{A G}$ when (i) S_{1} is open, (ii) S_{2} is closed.

Answer

(i) When S_{1} open,

$$
I_{L}=0
$$

R_{1} and R_{2} are in series, $R_{T}=R_{1}+R_{2}=40+120=160 \Omega$

$$
\begin{aligned}
& I_{1}=I_{2}=24 / 160=0.15 \mathrm{~A} \\
& V_{B G}=I_{2} R_{2}=0.15^{*} 120=18 \mathrm{~V} \\
& V_{A G}=V_{T}=24 \mathrm{~V}
\end{aligned}
$$

(ii) When S_{2} is closed,

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L} 2}=\mathrm{R}_{\mathrm{L}} / \mathrm{R}_{2}=(60)(120) /(60+120)=40 \Omega \\
& \mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{\mathrm{L} 2}=40+40=80 \Omega \\
& \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}=24 / 80=0.3 \mathrm{~A}
\end{aligned}
$$

By current divider rule,

$$
\begin{aligned}
& \mathrm{I}_{2}=(0.3) *(60) /(60+120)=0.1 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{L}}=(0.3) *(120) /(60+120)=0.2 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{BG}}=\mathrm{I}_{2} \mathrm{R}_{2}=0.1 * 120=12 \mathrm{~V}
\end{aligned}
$$

$$
V_{A G}=V_{T}=24 \mathrm{~V}
$$

b) Find the value of R_{L} for maximum power transfer in circuit shown. What is this maximum power?

Answer

Using the conversion from Norton equivalent circuit to thevenin equivalent circuit,
For current source I_{1} and resistance R_{1} cnovert to, $\mathrm{V}_{\mathrm{th} 1}=\mathrm{I}_{1} \mathrm{R}_{1}=2 * 6=12 \mathrm{~V} \quad \mathrm{R}_{\mathrm{th} 1}=\mathrm{R}_{1}=6 \Omega$
$\mathrm{V}_{\text {th2 }}=\mathrm{I}_{2} \mathrm{R}_{2}=1 * 18=18 \mathrm{~V} \quad \mathrm{R}_{\text {th2 }}=\mathrm{R}_{2}=18 \Omega$
The total equivalent circuit consists of a battery of voltage,

$$
\mathrm{V}=\mathrm{V}_{\mathrm{th} 1}+\mathrm{V}_{\mathrm{th} 2}=12+18=30 \mathrm{~V}
$$

in series with a resistance $R=R_{\mathrm{th} 1}+\mathrm{R}_{\mathrm{th} 2}=6+18=24 \mathrm{~V}$
in series with R_{L}.
For maximum power transfer, $\mathrm{R}_{\mathrm{L}}=\mathrm{R}=24 \mathrm{~V}$
The maximum power $\mathrm{P}_{\max }=\mathrm{V}^{2} / 4 \mathrm{R}=(30)^{2} /(4)(24)=9.375 \mathrm{~W}$

Solution to Question 2

a) Find the capacitor voltage $\mathrm{V}_{\mathrm{C}}(\mathrm{t})$ and the resistor voltage $\mathrm{V}_{\mathrm{R}}(\mathrm{t})$ for the circuit shown in figure. Plot these quantities.

Answer

The time constant $\mathrm{T}=\mathrm{RC}=(2 \mathrm{k})^{*}(0.1 \mu)=0.2 \mathrm{~ms}=200 \mu \mathrm{~s}$ For $0 \leq \mathrm{t} \leq 200 \mu \mathrm{~s}$, the capacitor is charging.

$$
\begin{aligned}
& V_{C}(0)=0 \\
& V_{C}(200 \mu \mathrm{~s})=20\left(1-\mathrm{e}^{-200 / 200}\right)=12.64 \mathrm{~V} \\
& V_{R}(0)=20 \mathrm{~V} \\
& V_{R}(200 \mu \mathrm{~s})=20 \mathrm{e}^{-200 / 200}=7.36 \mathrm{~V}
\end{aligned}
$$

For $200 \mu \mathrm{~s} \leq \mathrm{t} \leq 400 \mu \mathrm{~s}$, the capacitor is discharging.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}(200 \mu \mathrm{~s})=12.6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{C}}(400 \mu \mathrm{~s})=12.6 \mathrm{e}^{-200 / 200}=4.64 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}(200 \mu \mathrm{~s})=-12.6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}(400 \mu \mathrm{~s})=-12.6 \mathrm{e}^{-200 / 200}=-4.64 \mathrm{~V}
\end{aligned}
$$

For $400 \mu \mathrm{~s} \leq \mathrm{t} \leq 600 \mu \mathrm{~s}$, the capacitor is charging.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}(400 \mu \mathrm{~s})=4.64 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{c}}(600 \mu \mathrm{~s})=4.64+(20-4.64)\left(1-\mathrm{e}^{-200 / 200}\right)=14.35 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}(400 \mu \mathrm{~s})=20-4.64=15.36 \\
& \mathrm{~V}_{\mathrm{R}}(600 \mu \mathrm{~s})=15.36 \mathrm{e}^{-200 / 200}=5.65 \mathrm{~V}
\end{aligned}
$$

For $600 \mu \mathrm{~s} \leq \mathrm{t} \leq 800 \mu \mathrm{~s}$, the capacitor is discharging.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}(600 \mu \mathrm{~s})=14.35 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{C}}(800 \mu \mathrm{~s})=14.35 \mathrm{e}^{-200 / 200}=5.28 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& V_{R}(600 \mu s)=-14.35 V \\
& V_{R}\left(800 \mu s 0=-14.35 e^{-200 / 200}=-5.28 V\right.
\end{aligned}
$$

b) For the phase shifter shown, what is the phase shift between V_{T} and V_{R} and between V_{T} and V_{C}. Draw the voltage phasor diagram with V_{T} as reference voltage.

Answer

$$
X_{C}=1 / 2 п f C=1 / 2 п(60)\left(0.1 \times 10^{-6}\right)=26.53 \mathrm{k} \Omega
$$

The phase angle between V_{T} and V_{R} is φ,

$$
\begin{aligned}
& \tan \varphi=X_{C} / R=-26.53 \mathrm{k} / 400 \mathrm{k}=0.06633 \\
& \varphi=3.8^{\circ}
\end{aligned}
$$

The phase angle between V_{T} and V_{c} is θ,
$\tan \theta=-R / X_{C}=-400 k / 26.53 k=-15.08$
$\theta=-86.21^{\circ}$

Solution toQuestion 3

a) For the $R L C$ circuit at resonance, find f_{r}, Z, I, V_{C} and V_{L} at f_{r}, V_{R}, quality factor and bandwidth.

Answer

The RLC circuit at resonance,

$$
\begin{aligned}
& f_{r}=1 / 2 \pi \sqrt{ } L C=1 / 2 \pi \sqrt{ }\left(50 \times 10^{-6}\right)\left(56.3 \times 10^{-12}\right) \\
& =3 \times 10^{6} \mathrm{~Hz}=3 \mathrm{MHz} \\
& Z=R=18.85 \Omega \\
& \mathrm{I}=\mathrm{V} / \mathrm{Z}=\mathrm{V} / \mathrm{R}=50 \mu / 18.85=2.65 \mu \mathrm{~A} \\
& V_{C}=I X_{C}=I / 2 п f_{r} C=2.65 \times 10^{-6} / 2 \pi\left(3 \times 10^{6}\right)\left(56.3 \times 10^{-12}\right) \\
& =2.5 \times 10^{-3} \mathrm{~V}=2.5 \mathrm{mV} \\
& V_{L}=I X_{L}=I^{*}\left(2 \pi f_{\mathrm{r}} \mathrm{~L}\right)=\left(2.65 \times 10^{-6}\right) *\left(2 \pi^{*} 3 \times 10^{6} * 50 \times 10^{-6}\right) \\
& =2.5 \times 10^{-3} \mathrm{~V}=2.5 \mathrm{mV} \\
& \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{in}}=50 \mu \mathrm{~V} \\
& Q=X_{L} / R=2 \pi f_{r} L / R=2 \pi\left(3 \times 10^{6}\right) *\left(50 \times 10^{-6}\right) / 18.85 \\
& =50 \\
& \text { Bandwidth }=\mathrm{f}_{\mathrm{r}} / \mathrm{Q}=3 \times 10^{6} / 50=60 \times 10^{3} \mathrm{~Hz}=60 \mathrm{kHz}
\end{aligned}
$$

b) The diode in the circuit shown in Figure has a reverse-saturation current. Determine the diode voltage and current if (i) the diode is ideal (ii) real diode with internal resistance of 500Ω.

Answer

By Thevenin theorm,

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{th}}=\mathrm{R}_{1} / / \mathrm{R}_{2}=50 * 30 /(50+30)=18.75 \mathrm{k} \Omega \\
& \mathrm{~V}_{\mathrm{th}}=12 * 30 /(50+30)=4.5 \mathrm{~V}
\end{aligned}
$$

(i) The diode is ideal. It is represented as closed switch.

$$
V_{D}=0
$$

$$
I_{D}=4.5 / 18.75=0.24 \mathrm{~A}
$$

(ii) Real diode with internal resistance of 500Ω,

Applying KVL: $-4.5+18.75 k I_{D}+0.7+500 I_{D}=0$

$$
\begin{aligned}
& I_{D}=(4.5-0.7) /(18.75 \mathrm{k}+500)=0.197 \mathrm{~mA} \\
& V_{D}=0.7+(500)(0.197 \mathrm{~m})=0.7985 \mathrm{~V}
\end{aligned}
$$

Solution to Question 4

a) Find I_{B}, I_{C}, I_{E} and $V_{C E}$ in the transistor circuit shown in figure. $\mathrm{V}_{\mathrm{BE} \text { on }}=0.7 \mathrm{~V}$

Answer

Applying KVL to the base circuit:

$$
\begin{aligned}
& -5+56 \mathrm{k} \mathrm{I}_{\mathrm{B}}+0.7=0 \\
& \mathrm{I}_{\mathrm{B}}=(5-0.7) / 56 \mathrm{k}=0.0768 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}=100^{*} 0.0768 \mathrm{~m}=7.68 \mathrm{~mA} \\
& I_{\mathrm{E}}=I_{C}+\mathrm{I}_{\mathrm{B}}=7.68 \mathrm{~m}+0.0768 \mathrm{~m}=7.7568 \mathrm{~mA}
\end{aligned}
$$

Applying KVL to the collector circuit:

$$
\begin{aligned}
& -15+1 \mathrm{k} \mathrm{I}_{\mathrm{C}}+\mathrm{V}_{\mathrm{CE}}=0 \\
& \mathrm{~V}_{\mathrm{CE}}=15-(1 \mathrm{k})(7.68 \mathrm{~m})=7.32 \mathrm{~V}
\end{aligned}
$$

b) Find the output voltage $\mathrm{V}_{\text {out }}$ for each of the following operational amplifier circuits.

The circuit is inverting operational amplifier.
The gain,

$$
\begin{aligned}
& A=R_{F} / R_{i}=15 \mathrm{k} / 1.2 \mathrm{k}=12.5 \\
& V_{\text {out }}=A V_{\text {in }}=(12.5)^{*}\left(1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right)=12.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}
\end{aligned}
$$

The circuit is a summing operational amplifier,

$$
\begin{aligned}
V_{\text {out }} & =R_{F} / R_{1} V_{1}+R_{F} / R_{2} V_{2} \\
& =(5 / 2)(-3)+(5 / 1)(1.5) \\
& =-4.167 \mathrm{~V}
\end{aligned}
$$

Solution to Question 5

a) Draw the half-wave rectifier circuit $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\text {outp }}, \mathrm{V}_{\mathrm{dc}}, \mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\text {diode }}$, PIV to rectify AC voltage of $220 \mathrm{~V}, 50 \mathrm{~Hz}$. The transformer ratio is $8: 1$ and $R_{L}=100 \Omega$. Use second approximation for diode. If a $1000 \mu \mathrm{~F}$ capacitor is added to the output, calculate $\mathrm{V}_{\text {ripple, }} \mathrm{V}_{\mathrm{dc}}, \mathrm{I}_{\mathrm{L}}, \mathrm{PIV}$.

Answer

$$
V_{s}=V_{p}\left(N_{s} / N_{p}\right)=220(1 / 8)=27.5 \mathrm{~V}
$$

$$
V_{\text {speak }}=27.5 * \sqrt{ } 2=38.885 \mathrm{~V}
$$

$$
V_{\text {outpeak }}=38.885-1.4=37.485 \mathrm{~V}
$$

$$
V_{d c}=37.485 * 0.636=23.84 \mathrm{~V}
$$

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{d} d} / \mathrm{R}_{\mathrm{L}}=23.84 / 100=0.2384 \mathrm{~A}=238.4 \mathrm{~mA}
$$

$$
\mathrm{I}_{\text {diode }}=\mathrm{I}_{\mathrm{L}} / 2=238.4 / 2=119.2 \mathrm{~mA}
$$

$$
\text { PIV }=38.885-0.7=38.185 \mathrm{~V}
$$

$$
\text { Time constant }=\mathrm{R}_{\mathrm{L}} \mathrm{C}=(100)^{*}(1000 \mu)=0.1 \mathrm{~s}
$$

$$
\text { Discharge time }=1 / 50=0.02 \mathrm{~s}
$$

$$
V_{\text {ripple }}=V_{\text {outpeak }}\left(1-e^{-t / R L C}\right)
$$

$$
=37.485\left(1-\mathrm{e}^{-0.02 / 0.1}\right)=0.2526 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}
$$

$$
\mathrm{V}_{\mathrm{dc}}=\mathrm{V}_{\text {outpeak }}-\mathrm{V}_{\text {ripple }} / 2=37.485-0.1263=37.3587 \mathrm{~V}
$$

b) Choose the correct answer, Justify your choice.

1. A $2.2 k \Omega R_{1}$ is in parallel with a $3.3 k \Omega R_{2}$. If these two resistors carry a total current of 7.5 mA , how much is the applied voltage?
(a) 16.5 V
(b) 24.75 V
(c) 9.9 V
(d) 41.25 V .

Answer

$$
\begin{aligned}
& \mathrm{R}=2.2 * 3.3 /(2.2+3.3)=1.32 \mathrm{k} \Omega \\
& \mathrm{~V}=\mathrm{IR}=(7.5 \mathrm{~m})^{*}(1.32 \mathrm{k})=9.9 \mathrm{~V}
\end{aligned}
$$

2. A sine wave whose rms voltage is 25.2 V has a peak value of
(a) 17.8 V
(b) 16 V
(c) 50.4 V
(d) 35.6 V

Answer

$$
V_{\text {peak }}=25.2 \sqrt{ } 2=36.6 \mathrm{~V}
$$

3. An RC low-pass filter uses a $2.2 \mathrm{k} \Omega$ resistor and a $0.01 \mu \mathrm{~F}$ capacitor. What is its cutoff frequency?
(a) 3.5 MHz .
(b) 72.3 Hz .
(c) 7.23 kHz .
(d) 1.59 kHz .

Answer

$$
\begin{aligned}
f_{\text {cutoff }}=1 / 2 \pi R C & =1 / 2 \pi(2.2 \mathrm{k})(0.01 \mu) \\
& =7.23 \times 10^{3} \mathrm{~Hz}=7.23 \mathrm{kHz}
\end{aligned}
$$

4. In a p-type semiconductor, the majority current carriers are \qquad
(a) free electrons.
(b) valence electrons.
(c) protons. (d) holes.

Answer

The p-type semiconductor is doped with trivalent impurity atoms as Boron. The valence electrons of Boron are bonded to silicon atoms leaving one missing bond that serves as a hole. So the number of holes are increased without increasing the number of electrons.
5. What is the dc output voltage of an unfiltered half-wave rectifier whose peak output voltage is 9.8 V ?
(a) 6.23 V .
(b) 19.6 V .
(c) 9.8 V .
(d) 3.1 V .

Answer

$$
V_{d c}=9.8 * 0.636=6.23 \mathrm{~V}
$$

6. A bipolar junction transistor has \qquad
(a) only one $p-n$ junction.
(b) three $p-n$ junctions.
(c) no $p-n$ junctions.
(d) two p-n junctions.

Answer

The bipolar junction transistor consists of three regions: Emitter, Base and Collector. There is a junction between each two regions. So there are two junctions: one between emitter and base and the other between Base and collector.
7. A noninverting amplifier has $R_{F}=15 \mathrm{k} \Omega$ and $R_{i}=1.2 \mathrm{k} \Omega$. How much is its voltage gain?
(a) 12.5 .
(b) 12.5 .
(c) 13.5 .
(d) 9 .

Answer

$$
A=R_{F} / R_{i}=15 / 1.2=12.5
$$

