Banha University Faculty of Computers and Informatics Second Term 2012/2013 First Year General (corrective)

Solutions to the Questions for the Term Examination

Subject: Electronics (corrective) Allowed time: 3 Hours

Answer all questions. No. of questions: 5 No. of pages: 2

Solution to Question 1

a) For the circuit (1), find the voltages across the resistors, the current I_2 , the values of R_3 , the voltage of the battery V_T .

<u>Answer</u>

By Kirchhoff current law, $I_2 = I - I_3 = 300 - 120 = 180 \text{ mA}$ The voltage across R_2 and R_3 : $V_{23} = I_2R_2 = (180\text{m})^*(100) = 18 \text{ V}$ $R_3 = V_{23}/I_3 = 18/120\text{m} = 150 \Omega$ $V_T = I_T R_1 + V_{23} = (300\text{m})^*(120) + 18 = 36 + 18 = 54 \text{ V}$

b) Design the voltage divider shown in circuit (2), if the bleeder current is 15 mA.

<u>Answer</u>

The bleeder current passes through R₃. R₃ = V_C/I₃ = 24/15m = 1.6 k Ω $I_2 = I_C + I_3 = 15 + 15 = 30 \text{ mA}$ $R_2 = V_B/I_2 = 60/30\text{m} = 2 \text{ k}\Omega$ $I_1 = I_B + I_2 = 15 + 30 = 45 \text{ mA}$ $R_1 = V_A/I_1 = 90/45\text{m} = 2 \text{ k}\Omega$

Solution to Question 2

a) Find the branch currents in circuit (3), V_{NG} and check the power balance.

b) Find the value of R_L for maximum power transfer in circuit (4). What is this maximum power?

<u>Answer</u>

Apply Thevenin's thgeorem, Remove R_L, $I_2 = 120/(1.2+1.8)k = 120/3k = 40 \text{ mA}$ $V_{th} = I_2R_2 = (40m)^*(1.8k) = 72 \text{ V}$ $R_{th} = R_1//R_2 + R_3 = [(1.2)^*(1.8)/3]k + 680$ $= 720 + 680 = 1400 \Omega = 1.4 \text{ k}\Omega$ For maximum power transfer, $R_L = R_{th} = 1.4 \text{ k}\Omega$ The maximum power $P_{max} = V_{th}^2/4R_{th} = (72)^2/4*1400 = 0.9257 \text{ W}$

Solution to Question 3

a) Assume that the capacitor C in circuit (5) is initially uncharged. If S1 is moved to Position 1, how much is the capacitor voltage V_C at t = 1.5, 2.5 and 3.5 s. If the capacitor is fully charged with S1 in Position 1, and then S1 is moved to Position 2, how much is the resistor voltage at t = 1.5, 2.5 and 3.5 s.

`<u>Answer</u>

When S is moved to position (1), the capacitor is charging.

The capacitor voltage is $V_C(t) = V_T (1 - e^{-t/RC})$ RC = $(1 \text{ M})^*(1\mu) = 1 \text{ s}$ $V_C(1.5) = 300 (1 - e^{-1.5}) = 233.06 \text{ V}$ $V_C(2.5) = 300 (1 - e^{-2.5}) = 275.375 \text{ V}$ $V_C(3.5) = 300 (1 - e^{-3.5}) = 290.94 \text{ V}$

When S is moved to position (2), the capacitor is discharging.

The capacitor voltage is $V_C(t) = V_T e^{-t/RC}$

 $V_{C}(1.5) = 300 e^{-1.5} = 69.9 V$ $V_{C}(2.5) = 300 e^{-2.5} = 24.63 V$ $V_{C}(3.5) = 300 e^{-3.5} = 9.059 V$

b) For the filter shown in circuit (6), what is its type? Find the cutoff frequency and sketch its frequency response.

This is high pass filter.

The cutoff frequency $f_{cutoff} = 1/2\pi RC = 1/2\pi (10 \times 10^3)^* (0.047 \times 10^{-6})$ = 388.8 Hz

The frequency response $V_{out} = V_{in} R/\sqrt{R^2 + (1/2\pi fC)}$ = $V_{in} 2\pi fRC/\sqrt{1 + (2\pi fRC)^2}$

Solution to Question 4

a) Draw the half-wave rectifier circuit V_S, V_{outp}, V_{dc}, I_L, I_{diode}, PIV to rectify AC voltage of 220 V, 50 Hz. The transformer ratio is 3:1 and R_L = 100 Ω . Use second approximation for diode. If a 1000 µF capacitor is added to the output, calculate V_{ripple}, V_{dc}, I_L, PIV.

<u>Answer</u>

b) Find I_B , I_C , I_E and V_{CE} in circuit (7).

<u>Answer</u>

Applying KVL to the base circuit, $-5 + 56k I_B + 0.7 = 0$ $I_B = (5 - 0.7)/56k = 0.07679 \text{ mA} = 76.79 \mu \text{A}$ $I_C = \beta I_B = (100)^*(0.07679\text{ m}) = 7.679 \text{ mA}$ $I_E = I_B + I_C = 0.07679 + 7.679 = 7.75579 \text{ mA}$ Applying KVL to the collector circuit, $-15 + 1k I_C + V_{CE} = 0$ $V_{CE} = 15 - (1k)^*(7.5579 \text{ m}) = 15 - 7.6 = 7.4 \text{ V}$

Solution to Question 5

a) Calculate the output voltage for the operational amplifier shown in ciruit (8).

b) Choose the correct answer, Justify your choice.

1. A 2.2k Ω R₁ is in parallel with a 3.3k Ω R₂. If these two resistors carry a total current of 7.5 mA, how much is the applied voltage ? (a) 16.5 V (b)24.75 V (c) 9.9 V (d)41.25 V. R = R₁//R₂ = (2.2k)*(3.3k)/(2.2k + 3.3k) = 1.32 k Ω

V = IR = (7.5 m)*(1.32k) = 9.9 V

2. A Norton equivalent circuit consists of a 100 μ A current source, I_N, in parallel with a $10k\Omega$ resistance R_N. If this circuit is converted into a Thevenin equivalent circuit, how much is V_{TH} ? (a) 1 kV (b) 10 V (c) 1 V (d) It cannot be $V_{Th} = I_N R_N = (100\mu)^*(10k) = 1V$ 3. In RLC resonance circuit, what value of capacitance is needed to provide a resonant frequency of 1 MHz if L equals 50 μ H? (a) 506.6 pF (b) 506.6 µF (c) 0.001µF (d) 0.0016 µF. $F = 1/2\pi\sqrt{LC}$ $C = 1/4\pi^2 f^2 L = 1/4\pi^2 (10^6)^2 (50 \times 10^{-6}) = 5.071 \times 10^{-10} H = 507.1 \text{ pH}$ 4. A reverse-biased diode acts like (a)closed switch (b) open switch (c) small resistance (d) none of the above. I_{F} V_R VF $V_{\rm p}$ Zero reverse Note: V_B = 0.7 V for Si current, I and 0.3 V for Ge Æ Open switch Reverse-biased (zero current)