Banha University
Faculty of Computers and Informatics

Second Term 2012/2013
First Year General (corrective)

Solutions to the Questions for the Term Examination
Subject: Electronics (corrective) Allowed time: 3 Hours
Answer all questions. No. of questions: $5 \quad$ No. of pages: 2

Solution to Question 1

a) For the circuit (1), find the voltages across the resistors, the current I_{2}, the values of R_{3}, the voltage of the battery V_{T}.

Answer

By Kirchhoff current law, $\mathrm{I}_{2}=\mathrm{I}-\mathrm{I}_{3}=300-120=180 \mathrm{~mA}$
The voltage across R_{2} and $\mathrm{R}_{3}: \mathrm{V}_{23}=\mathrm{I}_{2} \mathrm{R}_{2}=(180 \mathrm{~m})^{*}(100)=18 \mathrm{~V}$
$\mathrm{R}_{3}=\mathrm{V}_{23} / \mathrm{I}_{3}=18 / 120 \mathrm{~m}=150 \Omega$
$\mathrm{V}_{\mathrm{T}}=\mathrm{I}_{\mathrm{T}} \mathrm{R}_{1}+\mathrm{V}_{23}=(300 \mathrm{~m}) *(120)+18=36+18=54 \mathrm{~V}$
b) Design the voltage divider shown in circuit (2), if the bleeder current is 15 mA .

Answer

The bleeder current passes through R_{3}.
$\mathrm{R}_{3}=\mathrm{V}_{\mathrm{C}} / \mathrm{I}_{3}=24 / 15 \mathrm{~m}=1.6 \mathrm{k} \Omega$

$$
\begin{aligned}
& \mathrm{I}_{2}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{3}=15+15=30 \mathrm{~mA} \\
& \mathrm{R}_{2}=\mathrm{V}_{\mathrm{B}} / \mathrm{I}_{2}=60 / 30 \mathrm{~m}=2 \mathrm{k} \Omega \\
& \mathrm{I}_{1}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{2}=15+30=45 \mathrm{~mA} \\
& \mathrm{R}_{1}=\mathrm{V}_{\mathrm{A}} / \mathrm{I}_{1}=90 / 45 \mathrm{~m}=2 \mathrm{k} \Omega
\end{aligned}
$$

Solution to Question 2

a) Find the branch currents in circuit (3), V_{NG} and check the power balance.

Answer

Applying KCL at junction N :

$$
\begin{equation*}
\mathrm{I}_{1}-\mathrm{I}_{2}-\mathrm{I}_{3}=0 \tag{1}
\end{equation*}
$$

Applying KVL to the left loop:

$$
\begin{equation*}
-18+4 \mathrm{I}_{1}+3 \mathrm{I}_{3}=0 \tag{2}
\end{equation*}
$$

Applying KVL to the right loop:

$$
\begin{equation*}
-6+12 I_{2}+3 I_{3}=0 \tag{3}
\end{equation*}
$$

Substituting I_{2} from equation (1) into equation (3), then

$$
-6+12\left(\mathrm{I}_{1}-\mathrm{I}_{3}\right)+3 \mathrm{I}_{3}=0
$$

$$
-6+12 I_{1}-9 I_{3}=0
$$

$$
\begin{equation*}
-2+4 I_{1}-3 I_{3}=0 \tag{4}
\end{equation*}
$$

Summing equations (2) and (4),

$$
\begin{aligned}
& -20+8 \mathrm{I}_{1}=0 \\
& \mathrm{I}_{1}=20 / 8=2.5 \mathrm{~A}
\end{aligned}
$$

From equation (4),

$$
I_{3}=(-2+(4) *(2.5)) / 3=8 / 3=2.667 \mathrm{~A}
$$

From equation (1),

$$
\mathrm{I}_{2}=\mathrm{I}_{1}-\mathrm{I}_{3}=20 / 8-8 / 3=-4 / 24=-1 / 6 \mathrm{~A}=-0.1667 \mathrm{~A}
$$

The $\mathrm{V}_{\mathrm{NG}}=\mathrm{I}_{3} \mathrm{R}_{3}=(8 / 3)^{*}(3)=8 \mathrm{~V}$
b) Find the value of R_{L} for maximum power transfer in circuit (4). What is this maximum power?

Answer

Apply Thevenin's thgeorem,
Remove R_{L},
$\mathrm{I}_{2}=120 /(1.2+1.8) \mathrm{k}=120 / 3 \mathrm{k}=40 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{th}}=\mathrm{I}_{2} \mathrm{R}_{2}=(40 \mathrm{~m}) *(1.8 \mathrm{k})=72 \mathrm{~V}$
$\mathrm{R}_{\mathrm{th}}=\mathrm{R}_{1} / / \mathrm{R}_{2}+\mathrm{R}_{3}=[(1.2) *(1.8) / 3] \mathrm{k}+680$

$$
=720+680=1400 \Omega=1.4 \mathrm{k} \Omega
$$

For maximum power transfer, $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{th}}=1.4 \mathrm{k} \Omega$
The maximum power $\mathrm{P}_{\text {max }}=\mathrm{V}_{\mathrm{th}}^{2} / 4 \mathrm{R}_{\mathrm{th}}=(72)^{2} / 4 * 1400=0.9257 \mathrm{~W}$

Solution to Question 3

a) Assume that the capacitor C in circuit (5) is initially uncharged. If S1 is moved to Position 1, how much is the capacitor voltage V_{C} at $t=1.5,2.5$ and 3.5 s . If the capacitor is fully charged with S1 in Position 1, and then S 1 is moved to Position 2, how much is the resistor voltage at $\mathrm{t}=1.5$, 2.5 and 3.5 s .

`Answer

When S is moved to position (1), the capacitor is charging.
The capacitor voltage is $\mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{V}_{\mathrm{T}}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}^{\prime}}\right)$
$\mathrm{RC}=(1 \mathrm{M}) *(1 \mu)=1 \mathrm{~s}$
$\mathrm{V}_{\mathrm{C}}(1.5)=300\left(1-\mathrm{e}^{-1.5}\right)=233.06 \mathrm{~V}$
$V_{C}(2.5)=300\left(1-\mathrm{e}^{-2.5}\right)=275.375 \mathrm{~V}$
$V_{C}(3.5)=300\left(1-e^{-3.5}\right)=290.94 \mathrm{~V}$
When S is moved to position (2), the capacitor is discharging.
The capacitor voltage is $\mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{V}_{\mathrm{T}} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$

$$
\begin{aligned}
& V_{c}(1.5)=300 \mathrm{e}^{-1.5}=69.9 \mathrm{~V} \\
& V_{C}(2.5)=300 \mathrm{e}^{-2.5}=24.63 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{C}}(3.5)=300 \mathrm{e}^{-3.5}=9.059 \mathrm{~V}
\end{aligned}
$$

b) For the filter shown in circuit (6), what is its type? Find the cutoff frequency and sketch its frequency response.

This is high pass filter.
The cutoff frequency $\mathrm{f}_{\text {cutoff }}=1 / 2 \pi R C=1 / 2 \pi\left(10 \times 10^{3}\right)^{*}\left(0.047 \times 10^{-6}\right)$

$$
=388.8 \mathrm{~Hz}
$$

The frequency response $V_{\text {out }}=V_{\text {in }} R / \sqrt{ } R^{2}+(1 / 2 n f C)$

$$
=V_{\text {in }} 2 \pi f R C / \sqrt{ } 1+(2 n f R C)^{2}
$$

Solution to Question 4

a) Draw the half-wave rectifier circuit $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\text {outp }}, \mathrm{V}_{\mathrm{dc}}, \mathrm{I}_{\mathrm{L}}$, $\mathrm{I}_{\text {diode }}$, PIV to rectify AC voltage of $220 \mathrm{~V}, 50 \mathrm{~Hz}$. The transformer ratio is $3: 1$ and $R_{L}=100 \Omega$. Use second approximation for diode. If a $1000 \mu \mathrm{~F}$ capacitor is added to the output, calculate $\mathrm{V}_{\text {ripple }}, \mathrm{V}_{\mathrm{dc}}$, $\mathrm{I}_{\mathrm{L}}, \mathrm{PIV}$.

Answer

(b)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{p}} \mathrm{~N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{p}}=220 *(1 / 3)=73.33 \mathrm{~V} \\
& \mathrm{~V}_{\text {speak }}=\mathrm{V}_{\mathrm{s}} \sqrt{ } 2=73.33 * \sqrt{ } 2=103.7 \mathrm{~V} \\
& \mathrm{~V}_{\text {outpeak }}=103.7-0.7=103 \mathrm{~V} \\
& \mathrm{~V}_{\text {dc }}=\mathrm{V}_{\text {outpeak }} / \pi=103 / \pi=32.8 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\text {dc }} / R_{\mathrm{L}}=32.8 / 100=0.328 \mathrm{~A}=328 \mathrm{~mA} \\
& \text { PIV }=103.7 \mathrm{~V} \\
& \mathrm{~V}_{\text {ripple }}=\mathrm{V}_{\text {outpeal }}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RLC}}\right) \\
& \mathrm{R}_{\mathrm{L}} \mathrm{C}=(100)^{*}\left(1000 \times 10^{-6}\right)=0.1 \mathrm{~s} \\
& \mathrm{t}=1 / 50=0.02 \mathrm{~s} \\
& \mathrm{~V}_{\text {ripple }}=103\left(1-\mathrm{e}^{-0.02 / 0.1}\right)=18.67 \mathrm{~V}_{\text {p-p }} \\
& \mathrm{V}_{\text {dc }}=\mathrm{V}_{\text {outpeak }}-\mathrm{V}_{\text {ripple }} / 2=103-18.67 / 2=93.665 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\text {dc }} / R_{\mathrm{L}}=93.665 / 100=0.93665 \mathrm{~A}=936.65 \mathrm{~mA} \\
& \text { PIV }=103.7 \mathrm{~V}
\end{aligned}
$$

b) Find $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{E}}$ and V_{CE} in circuit (7).

Answer

Applying KVL to the base circuit,

$$
-5+56 k I_{B}+0.7=0
$$

$$
\mathrm{I}_{\mathrm{B}}=(5-0.7) / 56 \mathrm{k}=0.07679 \mathrm{~mA}=76.79 \mu \mathrm{~A}
$$

$$
I_{C}=\beta I_{B}=(100)^{*}(0.07679 \mathrm{~m})=7.679 \mathrm{~mA}
$$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=0.07679+7.679=7.75579 \mathrm{~mA}
$$

Applying KVL to the collector circuit,
$-15+1 k I_{C}+V_{C E}=0$
$\mathrm{V}_{\mathrm{CE}}=15-(1 \mathrm{k}) *(7.5579 \mathrm{~m})=15-7.6=7.4 \mathrm{~V}$

Solution to Question 5

a) Calculate the output voltage for the operational amplifier shown in ciruit (8).

$$
\begin{aligned}
V_{\text {out }} & =-\left(R_{F} / R_{1} v_{1}+R_{F} / R_{1} v_{1}+R_{F} / R_{1} v_{1}\right) \\
& =-R_{F} / R\left(v_{1}+v_{2}+v_{3}\right) \\
& =-(1 \mathrm{k} / 1 \mathrm{k})(-3+7-1)=-3 \mathrm{~V}
\end{aligned}
$$

b) Choose the correct answer, Justify your choice.

1. A $2.2 k \Omega R_{1}$ is in parallel with a $3.3 k \Omega R_{2}$. If these two resistors carry a total current of 7.5 mA , how much is the applied voltage ?
(a) 16.5 V
(b) 24.75 V
(c) 9.9 V
(d)41.25 V.
$\mathrm{R}=\mathrm{R}_{1} / / \mathrm{R}_{2}=(2.2 \mathrm{k})^{*}(3.3 \mathrm{k}) /(2.2 \mathrm{k}+3.3 \mathrm{k})=1.32 \mathrm{k} \Omega$
$\mathrm{V}=\mathrm{IR}=(7.5 \mathrm{~m})^{*}(1.32 \mathrm{k})=9.9 \mathrm{~V}$
2. A Norton equivalent circuit consists of a $100 \mu \mathrm{~A}$ current source, I_{N}, in parallel with a $10 \mathrm{k} \Omega$ resistance R_{N}. If this circuit is converted into a Thevenin equivalent circuit, how much is $\mathrm{V}_{\text {TH }}$?
(a) 1 kV
(b) 10 V
(c) 1 V
(d) It cannot be
$\mathrm{V}_{\mathrm{Th}}=\mathrm{I}_{\mathrm{N}} \mathrm{R}_{\mathrm{N}}=(100 \mu)^{*}(10 \mathrm{k})=1 \mathrm{~V}$
3. In RLC resonance circuit, what value of capacitance is needed to provide a resonant frequency of 1 MHz if L equals $50 \mu \mathrm{H}$?
(a) 506.6 pF
(b) $506.6 \mu \mathrm{~F}$
(c) $0.001 \mu \mathrm{~F}$
(d) $0.0016 \mu \mathrm{~F}$.
$F=1 / 2 \pi \sqrt{ } L C$
$C=1 / 4 \Pi^{2} f^{2} \mathrm{~L}=1 / 4 \Pi^{2}\left(10^{6}\right)^{2}\left(50 \times 10^{-6}\right)=5.071 \times 10^{-10} \mathrm{H}=507.1 \mathrm{pH}$
4. A reverse-biased diode acts like
(a)closed switch
(b) open switch
(c) small resistance
(d) none of the above.

