

Benha University

$1^{\text {st }}$ Term Exam (January 2018) Final Exam
Class: $1^{\text {st }}$ Year Students (تخلفات)
Subject: Physics (I)

Faculty of computer $\&$ informatics
Date: 28/12/2018
Time: 3 Hs.
Examiners: Dr. Salah Hamza

د صلاح عيد ابراهيم حمزة
 ورقة كاملة

Q) Choose the correct answer and shaded its circle in the answer sheet: [115 marks]

Note: Select one answer only - don't use corrector - don't choose more than one answer.

Q1) Answer the following questions

The answer in red color

1. The dimensions of the velocity is, v, is given by:
(b) $\mathrm{L}^{-1} \mathrm{~T}^{-2}$,
(c) $\mathrm{L}^{2} \mathrm{~T}^{-2}$
2. Young's modulus of elasticity is given by:
(a) $\frac{F_{\perp} \ell}{A \Delta \ell}$
(b) $\frac{F_{\|}}{A \theta}$
(c) $-\frac{\mathrm{PV}}{\Delta \mathrm{V}}$
3. For an object performing simple harmonic motion, the maximum velocity is given by: (a) A, (b) ωA, (c) $\omega^{2} A$
4. We can classify waves according to the motion of particles into: (a) Transverse, (b) plane, (c) Spherical
5. Chose the correct answer: (a) $x=v_{o}+\frac{1}{2} \mathrm{at}^{2}$, (b) $\Delta \mathrm{x}=\mathrm{v}_{\mathrm{o}}+$ at, (c) $\Delta \mathrm{x}=\frac{1}{2}\left(v_{\mathrm{o}}+\mathrm{v}\right) \mathrm{t}$
6. The ratio of change in length to original length is defined as: (a) Volume strain (b) Longitudinal strain (c)Tangent strain.
7. Point P is known as: (a) Breaking point, (b) Elastic limit, (c) Plastic limit
8. Point R is known as: (a) Breaking point,
(b) Elastic limit,
(c) Plastic limit
9. In OP range: (a) Stress $=$ Strain, (b) Strain \propto Stress, (c) Stress \propto Strain
10. In OP range, the behavior is, (a) Plastic
(b) Elastic,
(c) no answer
11. Hooke's law is valid in the range:
(a) OP,
(b) PR,
(c) no one

12. For an object performing simple harmonic motion, the maximum velocity is given by: (a) A, (b) $\omega \mathrm{A}$, (c) $\omega^{2} \mathrm{~A}$
13. The main equation of simple harmonic motion is:
(a) $\ddot{X}=-\omega^{2} X$,
(b) $X=-\omega^{2} \ddot{X}$,
(c) $\ddot{X}=\omega^{2} X$
14. The work done per unit volume in stretching an elastic wire is given by:
(a) $\frac{1}{2} \times$ Stres $s \times$ Strain,
(b) Stress \times Strain,
(c) $\frac{1}{4} \times$ Stres $\mathrm{s} \times$ Strain
15. Poison's ratio is given by
(a) $\frac{-\mathrm{dr} / \ell}{\mathrm{d} \ell / \mathrm{r}}$,
(b) $\frac{-\ell \mathrm{dr}}{\mathrm{rd} \ell}$,
(c) $\frac{-\mathrm{d} \ell / \ell}{\mathrm{dr} / \mathrm{r}}$

Q2) Using the dimensional analysis, derive an expression for the time period of oscillation of a simple pendulum. Assume that the time period depends on (i) mass, (ii) length and (iii) acceleration due to gravity

Solution

Assume that $\mathrm{t}, \mathrm{m}, \ell$ and g are related through the equation:

$$
\begin{aligned}
& \mathrm{t} \propto \mathrm{~m}^{\mathrm{x}} \ell^{\mathrm{y}} \mathrm{~g}^{\mathrm{z}} \\
& \mathrm{t}=\mathrm{km}^{\mathrm{x}} \ell^{\mathrm{y}} \mathrm{~g}^{\mathrm{z}}
\end{aligned}
$$

By using the dimensional method

$$
\begin{aligned}
& T=M^{x} L^{y}\left(L T^{-2}\right)^{z} \\
& M^{0} L^{0} T^{1}=M^{x} L^{y+z} T^{-2 z}
\end{aligned}
$$

Comparison the powers of M, L and T on both sides

$$
\mathrm{x}=0, \quad \mathrm{y}+\mathrm{z}=0, \quad-2 \mathrm{z}=1
$$

Solving the three equations,

$$
\begin{aligned}
& \mathrm{x}=0, \quad \mathrm{y}=\frac{1}{2}, \quad \mathrm{z}=-\frac{1}{2} \\
& \therefore \mathrm{t}=\mathrm{k} \sqrt{\frac{\ell}{\mathrm{~g}}}
\end{aligned}
$$

Q3) Prove that the relation between the linear velocity v, angular frequency ω and wave number k is $\omega=\mathrm{kv}$.
-- Solution
Since

$$
2 \pi=\omega \mathrm{T}
$$

and

$$
2 \pi=\mathrm{k} \lambda
$$

So

$$
\omega \mathrm{T}=\mathrm{k} \lambda
$$

Or

$$
\omega=\mathrm{k} \lambda * \frac{1}{\mathrm{~T}}
$$

But

$$
v=\frac{1}{T}
$$

So

$$
\omega=\mathrm{k} \lambda \nu
$$

By using the relation

$$
\lambda \nu=v
$$

We get

$$
\omega=\mathrm{kv}
$$

