

Faculty of Computers & Artificial Intelligence

1st Term (January 2020) Final Exam Level: 1st level Major: General Course Code: BS121 Subject: Physics

Benha University

Date: 04 / 01 /2020 Time: 2 Hours Total Marks: 50 Marks Examiner(s): Dr. Salah Hamza

د صلاح عيد إبراهيم حمزة

ت/ 2020 / 10 / 04

نموذج إجابة مادة/ الفيزياء الفرقة الأولي حاسبات (مادة كامله)

Choose the correct answer and shaded its circle in the answer sheet.

- 1. The magnitude of two vectors \vec{A} and \vec{B} are 12 units and 8 units. The largest and smallest values for the resultant vector $\vec{R} = \vec{A} + \vec{B}$ are: (a) 14.4 and 8 (b) 10 and 5 (c) 20 and 4.
- 2. In SI system of units, the units of Coulomb constant k_e is (a) Nm^2C^{-2} (b) $Nm^{-2}C^2$ (c) $Nm^{-2}C^{-2}$
- 3. The flux of a constant electric field of 5 NC^{-1} in the z-direction through a rectangle with area 4 m^2 in the xy-plane. (a) $20 \text{ Nm}^2 \text{C}^{-1}$ (b) $10 \text{ Nm}^2 \text{C}^{-1}$ (c) $0 \text{ Nm}^2 \text{C}^{-1}$
- 4. From the figure, the value of the resultant vector is (a) R = A + B(b) R = A - B (c) R = B - A
- 5. Object A has a charge of 2μ C, and object B has a charge of 6μ C. Which statement is true? (a) $\vec{F}_{AB} = -3\vec{F}_{BA}$ (b) $\vec{F}_{AB} = -\vec{F}_{BA}$ (c) $3\vec{F}_{AB} = -\vec{F}_{BA}$
- 6. The material of the sphere in the figure is (a) insulator (b) conductor (c) semiconductor
- 7. The units of the electric field E is (a) NC^{-2} (b) NC^{2} (c) NC^{-1}
- 8. The units of the Coulomb's constant k_e are (a) NC^{-2} (b) Nm^2C^{-2} (c) NC^{-1}
- 9. The magnitude of the electric force F between charges q_1 and q_2 separated by a distance r is given by: (a) $Fr = k_e q_1 q_2$ (b) $Fr^2 = k_e q_1 q_2$ (c) $F = k_e q_1 q_2 r^2$
- 10. The units of the electric flux $\Phi_{\rm E}$ are (a) NmC⁻¹ (b) Nm²C⁻¹ (c) NC⁻¹
- 11. Which of the following is incorrect: (a) $\underline{\nabla} \cdot \underline{\mathbf{E}} = \rho / \varepsilon_{o}$ (b) $\underline{\nabla} \cdot \underline{\mathbf{D}} = \rho$ (c) $\underline{\nabla} \cdot \underline{\mathbf{D}} = \rho / \varepsilon_{o}$
- 12. The first Maxwell equation in electrostatics is: (a) $\underline{\nabla} \cdot \underline{\mathbf{E}} = \rho/\epsilon_{o}$ (b) $\underline{\nabla} \times \underline{\mathbf{D}} = \rho$ (c) $\underline{\nabla} \cdot \underline{\mathbf{D}} = \rho/\epsilon_{o}$
- 13. The resultant value of $\underline{\nabla} \cdot \underline{D}$ is: (a) vector quantity (b) scalar quantity (c) no answer
- 14. The charge density ρ of $\underline{D} = xy^2\hat{i} + yx^2\hat{j} + z\hat{k}$ is: (a) x + y + 1 (b) $y^2 + x^2 + 1$ (c) $y^2 + x^2 + \hat{k}$
- 15. The charge density ρ of $\underline{D} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ is: (a) x + y + z (b) $y^2 + x^2 + z^2$ (c) 2(x + y + z)
- 16. The material of the sphere in the figure is (a) insulator, (b) conductor (c) semiconductor
- 17. The differential form of Gauss's law is: (a) $\nabla \cdot \underline{D} = \rho$ (b) $\nabla \times \underline{D} = \rho$ (c) $\nabla \cdot \underline{D} = \sigma$
- 18. The radial component of the operator $\underline{\nabla}$ in cylindrical coordinates is: (a) $\partial/\partial r$ (b) $\partial/r\partial \theta$ (c) $\partial/\partial z$
- 19. The radial component of $\underline{\nabla} \cdot \underline{D}$ is: (a) $\partial / \partial r(rD_r)$ (b) $r^{-1} \partial / \partial r(rD_r)$ (c) $\partial / \partial z(rD_z)$
- 20. The volume charge density ρ of the field $\underline{\mathbf{D}} = \hat{\mathbf{r}}$ is: (a) 1/r (b) $r^{-1}\partial/\partial r(rD_r)$ (c) $\partial r(rD_r)$
- 21. The electric field lines in Fig 1 satisfy the relation:
- (a) $\underline{\nabla} \cdot \underline{\mathbf{E}} = \rho$ (b) $\underline{\nabla} \cdot \underline{\mathbf{E}} = \rho/\varepsilon_{o}$ (c) $\underline{\nabla} \cdot \underline{\mathbf{E}} = 0$ 22. The electric field lines in Fig.2 satisfy the relation

23. The z-component of $\nabla \cdot \underline{D}$ in Cartesian and cylindrical coordinates are: (a)the same (b)different (c)no answer

Fig. 2

Fig. 1

В

- 24. The charge "A" in Fig. 3 is (a) positive (b) negative (c) no answer
- 25. The charge "B" in Fig. 3 is (a) positive (b) negative (c) no answer
- 26. The electric flux Φ_E is given by (a) EA(b) E/A(c) A/E
- 27. The electric flux $\Phi_{\rm E}$ is given by (a) $q_{\rm in} \epsilon_{\rm o}$ (b) $q_{\rm in} / \epsilon_{\rm o}$ (c) $\epsilon_{\rm o} / q_{\rm in}$
- 28. The electric flux through the surface in Fig. 4 is: (a) $-3/\epsilon_{o}$ (b) $3/\epsilon_{o}$ (c) $-6/\epsilon_{o}$
- A spherical conducting shell of inner radius "a" and outer radius "b" carries a total charge "+ Q " distributed on its surface (Fig.5).
- 29. The electric flux at r = a is (a) 0 (b) Q (c) Q/ϵ_o
- 30. The electric flux at r = b is (a) 0 (b) Q (c) Q/ϵ_o
- If an additional charge of -2Q is placed at the center (Fig. 6).
- 31. The electric flux at r = a is (a) 0 (b) $-Q/\epsilon_o$ (c) $-2Q/\epsilon_o$
- 32. The electric flux at r = b is (a) 0 (b) $-Q/\epsilon_o$ (c) $-2Q/\epsilon_o$
- 33. From Fig. 7, the electric field at "a" is (a) 0 (b) $\sigma/2\epsilon_o$ (c) σ/ϵ_o
- 34. From Fig. 7, the electric field at "b" is (a) 0 (b) $\sigma/2\varepsilon_0$ (c) σ/ε_0
- 35. The electric field E at a distance r from a charge q is (a) Fq , (b) q/F (c) F/q
- 36. In Fig. 8, the electric field at "a" is (a) 0 (b) $\sigma/2\varepsilon_0$ (c) σ/ε_0
- 37. In Fig. 8, the electric field at "b" is (a) 0 (b) $\sigma/2\epsilon_0$ (c) σ/ϵ_0
- 38. In Fig. 8, the electric field at "c" is (a) 0 (b) $\sigma/2\varepsilon_{0}$ (c) σ/ε_{0}
- Figure 9 shows a charged particle "q" moving in a magnetic field "B". The magnetic force F_B is always directed toward the center of the circle and a centripetal force F_c is upward the center. Then,
- 39. The angular velocity " ω " is (a) r/υ (b) υ/r (c) υr
- 40. The magnetic force F_B is (a) quB (b) mu²/r (c) qBr
- 41. The centripetal force F_c is (a) qvB (b) mv²/r (c) qBr
- 42. The radius of the path "r" is (a) $m\upsilon/qB$ (b) qB/m (c) qBr/m
- 43. The velocity of the particle " υ " is (a) $m\upsilon/\,qB$ (b) $qB\,/\,m$ (c) $qB\,/\,m$
- 44. Chose the correct equation (a) $mr = q\upsilon B$ (b) mB = qBr (c) $m\upsilon = qBr$
- 45. The angular velocity of the particle " ω " is (a) m υ/qB (b) qB/m (c) qBr/m
- 46. The periodic time "T" can be calculated from (a) qBr/υ (b) $qB\upsilon/2\pi r$ (c) $2\pi m/qB$
- 47. The mass of the particle "m" can be calculated from (a) qBr/υ (b) $qB\upsilon/2\pi r$ (c) $B\upsilon r/q$
- Proton of charge $q = 1.6 \times 10^{-19}$ C and mass $m = 1.67 \times 10^{-27}$ Kg move in a circular orbit with radius 2 cm under the effect of a magnetic field intensity 2 T. Then
- 48. The proton angular frequency is (a) $2.92 \times 10^{3} \text{ s}^{-1}$ (b) $9.2 \times 10^{5} \text{ s}^{-1}$ (c) $1.92 \times 10^{7} \text{ s}^{-1}$
- 49. The proton velocity in its orbit is (a) $8.83 \times 10^{6} \text{ m/s}$ (b) $3.83 \times 10^{5} \text{ m/s}$ (c) $33.8 \times 10^{4} \text{ m/s}$
- 50. The time required for one com0plete revolution is (a) 0.237×10^{-6} s (b) 0.237×10^{-5} s (c) 0.27×10^{-8} s

GOOD LUCK,

Prof. Dr. Salah Hamza

Fig. 3

