Faculty of Computers \& Artificial Intelligence
$1^{\text {st }}$ Term (January 2020) Final Exam
Level: ${ }^{\text {st }}$ level Major: General
Course Code: BS121
Subject: Physics

Benha University
Date: 04 / 01 /2020
Time: 2 Hours
Total Marks: 50 Marks
Examiner(s): Dr. Salah Hamza

د صدلاح عيد إبراهيم حمزة
04/01/2020/ ت

Choose the correct answer and shaded its circle in the answer sheet.

1. The magnitude of two vectors $\overline{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ are 12 units and 8 units. The largest and smallest values for the resultant vector $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$ are: (a) 14.4 and 8 (b) 10 and 5 (c) 20 and 4.
2. In SI system of units, the units of Coulomb constant k_{e} is (a) $\mathrm{Nm}^{2} \mathrm{C}^{-2}$ (b) $\mathrm{Nm}^{-2} \mathrm{C}^{2}$ (c) $\mathrm{Nm}^{-2} \mathrm{C}^{-2}$
3. The flux of a constant electric field of $5 \mathrm{NC}^{-1}$ in the z-direction through a rectangle with area $4 \mathrm{~m}^{2}$ in the xy-plane. (a) $20 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (b) $10 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (c) $0 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
4. From the figure, the value of the resultant vector is (a) $R=A+B$ (b) $\mathrm{R}=\mathrm{A}-\mathrm{B}$ (c) $\mathrm{R}=\mathrm{B}-\mathrm{A}$

5. Object A has a charge of $2 \mu \mathrm{C}$, and object B has a charge of $6 \mu \mathrm{C}$. Which statement is true?
(a) $\stackrel{\rightharpoonup}{F}_{A B}=-3 \overrightarrow{\mathrm{~F}}_{\mathrm{BA}}$
(b) $\overrightarrow{\mathrm{F}}_{\mathrm{AB}}=-\overrightarrow{\mathrm{F}}_{\mathrm{BA}}$
(c) $3 \stackrel{\mathrm{~F}}{\mathrm{AB}}=-\stackrel{\rightharpoonup}{\mathrm{F}}_{\mathrm{BA}}$
6. The material of the sphere in the figure is (a) insulator (b) conductor (c) semiconductor
7. The units of the electric field E is (a) NC^{-2} (b) NC^{2} (c) NC^{-1}
8. The units of the Coulomb's constant k_{e} are (a) NC^{-2} (b) $\mathrm{Nm}^{2} \mathrm{C}^{-2}$ (c) NC^{-1}

9. The magnitude of the electric force F between charges q_{1} and q_{2} separated by a distance r is given by: (a) $\mathrm{Fr}=\mathrm{k}_{\mathrm{e}} \mathrm{q}_{1} \mathrm{q}_{2}$ (b) $\mathrm{Fr}^{2}=\mathrm{k}_{\mathrm{e}} \mathrm{q}_{1} \mathrm{q}_{2}$ (c) $\mathrm{F}=\mathrm{k}_{\mathrm{e}} \mathrm{q}_{1} \mathrm{q}_{2} \mathrm{r}^{2}$
10. The units of the electric flux Φ_{E} are (a) NmC^{-1} (b) $\mathrm{Nm}^{2} \mathrm{C}^{-1}$ (c) NC^{-1}
11. Which of the following is incorrect: (a) $\underline{\nabla} \cdot \underline{E}=\rho / \varepsilon_{o}$
(b) $\underline{\nabla} \cdot \underline{D}=\rho$
(c) $\underline{\nabla} \cdot \underline{\mathrm{D}}=\rho / \varepsilon_{\text {o }}$
12. The first Maxwell equation in electrostatics is: (a) $\underline{\nabla} \cdot \underline{E}=\rho / \varepsilon_{\text {o }}$
(b) $\underline{\nabla} \times \underline{D}=\rho$
(c) $\underline{\nabla} \cdot \underline{\mathrm{D}}=\rho / \varepsilon_{\text {o }}$
13. The resultant value of $\underline{\nabla} \cdot \underline{D}$ is: (a) vector quantity
(b) scalar quantity
(c) no answer
14. The charge density ρ of $\underline{D}=x y^{2} \hat{i}+y x^{2} \hat{j}+z \hat{k}$ is: (a) $x+y+1$
(b) $y^{2}+x^{2}+1$
(c) $y^{2}+x^{2}+\hat{k}$
15. The charge density ρ of $\underline{D}=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$ is: (a) $x+y+z$
(b) $y^{2}+x^{2}+z^{2}$
(c) $2(x+y+z)$
16. The material of the sphere in the figure is (a) insulator,
(b) conductor (c) semiconductor
17. The differential form of Gauss's law is: (a) $\underline{\nabla} \cdot \underline{\mathrm{D}}=\rho$
(b) $\underline{\nabla} \times \underline{D}=\rho$
(c) $\underline{\nabla} \cdot \underline{\mathrm{D}}=\sigma$
18. The radial component of the operator $\underline{\nabla}$ in cylindrical coordinates is: (a) $\partial / \partial \mathrm{r}$ (b) $\partial / \mathrm{r} \partial \theta$
(c) $\partial / \partial \mathrm{z}$
19. The radial component of $\underline{\nabla} \cdot \underline{\mathrm{D}}$ is: (a) $\partial / \partial \mathrm{r}\left(\mathrm{rD}_{\mathrm{r}}\right)$ (b) $\mathrm{r}^{-1} \partial / \partial \mathrm{r}\left(\mathrm{rD}_{\mathrm{r}}\right)$ (c) $\partial / \partial \mathrm{z}\left(\mathrm{rD}_{\mathrm{z}}\right)$
20. The volume charge density ρ of the field $\underline{D}=\hat{\mathrm{r}}$ is: (a) $1 / \mathrm{r}$
(b) $\mathrm{r}^{-1} \partial / \partial \mathrm{r}\left(\mathrm{rD}_{\mathrm{r}}\right)$
(c) $\partial \mathrm{r}\left(\mathrm{rD}_{\mathrm{r}}\right)$
21. The electric field lines in Fig 1 satisfy the relation:
(a) $\underline{\nabla} \cdot \underline{E}=\rho$
(b) $\underline{\nabla} \cdot \underline{E}=\rho / \varepsilon_{0}$
(c) $\underline{\nabla} \cdot \underline{E}=0$
22. The electric field lines in Fig 2 satisfy the relation:
(a) $\underline{\nabla} \cdot \underline{E}=\rho$
(b) $\underline{\nabla} \cdot \underline{E}=\rho / \varepsilon_{o}$ (c) $\underline{\nabla} \cdot \underline{E}=0$

Fig. 2

Fig. 1
23. The z-component of $\underline{\nabla} \cdot \underline{\mathrm{D}}$ in Cartesian and cylindrical coordinates are: (a)the same (b)different (c)no answer

24. The charge "A" in Fig. 3 is (a) positive (b) negative (c) no answer 25. The charge " B " in Fig. 3 is (a) positive (b) negative (c) no answer 26. The electric flux Φ_{E} is given by (a) EA (b) E/A (c) A/E
27. The electric flux Φ_{E} is given by (a) $\mathrm{q}_{\mathrm{in}} \varepsilon_{\mathrm{o}}$ (b) $\mathrm{q}_{\mathrm{in}} / \varepsilon_{\mathrm{o}}$ (c) $\varepsilon_{\mathrm{o}} / \mathrm{q}_{\text {in }}$
28. The electric flux through the surface in Fig. 4 is: (a) $-3 / \varepsilon_{\text {o }}$ (b) $3 / \varepsilon_{o}$ (c) $-6 / \varepsilon_{o}$

- A spherical conducting shell of inner radius "a" and outer radius " b " carries a total charge " +Q " distributed on its surface (Fig.5).

29. The electric flux at $r=a$ is (a) 0 (b) Q (c) Q / ε_{o}
30. The electric flux at $\mathrm{r}=\mathrm{b}$ is (a) 0 (b) Q (c) $\mathrm{Q} / \varepsilon_{o}$

- If an additional charge of -2 Q is placed at the center (Fig. 6).

31. The electric flux at $\mathrm{r}=\mathrm{a}$ is (a) 0 (b) $-\mathrm{Q} / \varepsilon_{\mathrm{o}}$ (c) $-2 \mathrm{Q} / \varepsilon_{\text {o }}$
32. The electric flux at $\mathrm{r}=\mathrm{b}$ is (a) 0 (b) $-\mathrm{Q} / \varepsilon_{\mathrm{o}}$ (c) $-2 \mathrm{Q} / \varepsilon_{\text {o }}$
33. From Fig. 7, the electric field at "a" is (a) 0 (b) $\sigma / 2 \varepsilon_{o}$ (c) σ / ε_{o}
34. From Fig. 7, the electric field at "b" is (a) 0 (b) $\sigma / 2 \varepsilon_{o}$ (c) σ / ε_{o}

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

(c) F / q

Fig. 8

38. In Fig. 8, the electric field at "c" is (a) 0 (b) $\sigma / 2 \varepsilon_{0}$ (c) σ / ε_{o}

- Figure 9 shows a charged particle " q " moving in a magnetic field " B ". The magnetic force F_{B} is always directed toward the center of the circle and a centripetal force F_{c} is upward the center. Then,

39. The angular velocity " ω " is (a) r / v (b) v / r (c) $v r$
40. The magnetic force F_{B} is (a) quB (b) $\mathrm{mv}^{2} / \mathrm{r}$ (c) qBr
41. The centripetal force F_{c} is (a) $q \cup B$ (b) $\mathrm{mv}^{2} / \mathrm{r}$ (c) qBr
42. The radius of the path " r " is (a) $\mathrm{mv} / \mathrm{qB}$ (b) qB / m (c) $\mathrm{qBr} / \mathrm{m}$
43. The velocity of the particle " v " is (a) $\mathrm{mv} / \mathrm{qB}$ (b) qB / m (c) $\mathrm{qBr} / \mathrm{m}$
44. Chose the correct equation (a) $\mathrm{mr}=\mathrm{quB}$ (b) $\mathrm{mB}=\mathrm{qBr}$ (c) $\mathrm{mv}=\mathrm{qBr}$
45. The angular velocity of the particle " ω " is (a) $\mathrm{mv} / \mathrm{qB}$ (b) qB / m (c) $\mathrm{qBr} / \mathrm{m}$

Fig. 9
46. The periodic time " T " can be calculated from (a) qBr / v (b) $\mathrm{qBv} / 2 \pi \mathrm{r}$ (c) $2 \pi \mathrm{~m} / \mathrm{qB}$
47. The mass of the particle " m " can be calculated from (a) $\mathrm{qBr} / \mathrm{v}$ (b) $\mathrm{qBv} / 2 \pi \mathrm{r}$ (c) $\mathrm{Bur} / \mathrm{q}$

- Proton of charge $\mathrm{q}=1.6 \times 10^{-19} \mathrm{C}$ and mass $\mathrm{m}=1.67 \times 10^{-27} \mathrm{Kg}$ move in a circular orbit with radius 2 cm under the effect of a magnetic field intensity 2 T . Then

48. The proton angular frequency is (a) $2.92 \times 10^{3} \mathrm{~s}^{-1}$ (b) $9.2 \times 10^{5} \mathrm{~s}^{-1}$ (c) $1.92 \times 10^{7} \mathrm{~s}^{-1}$
49. The proton velocity in its orbit is (a) $8.83 \times 10^{6} \mathrm{~m} / \mathrm{s}$ (b) $3.83 \times 10^{5} \mathrm{~m} / \mathrm{s}$ (c) $33.8 \times 10^{4} \mathrm{~m} / \mathrm{s}$
50. The time required for one complete revolution is (a) $0.237 \times 10^{-6} \mathrm{~s}$ (b) $0.237 \times 10^{-5} \mathrm{~s}$ $0.27 \times 10^{-8} \mathrm{~s}$

GOOD LUCK

Prof. Dr. Sarah Hamza

