

Benha University 1st Term Exam (January 2017) Final Exam Class: 1st Year Students Subject: Physics (I) Faculty of computer & informatics Date: 12/01/2017 Time: " Hs. Examiner: Dr. Salah Hamza

الفرقة: الأولي	
تاريخ الامتحان: ٢٠١٧/٠١/١٢	
نموذج إجابة مادة الفيزياء	

د./ صلاح عيد إبراهيم حمزة دور يناير ٢٠١٧ الإجابة باللون الأحمر

Q1) Choose the correct answer and shaded its circle in the answer sheet:[90 marks]Note: Select one answer only - don't use corrector - don't choose more than one answer.

- The symbols that we use in dimensional analysis are

 (a) M, L, T
 (b) Kg, m, Sec.
 (c) No answer

 The equation η = πPR⁴/8Aυℓ where (η) the coefficient of viscosity (P) pressure, (R)
- 2. The equation $\eta = \pi P R / 8 A \vartheta \ell$ where (η) the coefficient of viscosity (P) pressure, (R) radius, (A) is the cross sectional area, (υ) velocity, and (ℓ) length, is dimensionally (a) Correct (b) Incorrect (c) No answer
- 3. Chose the correct answer: (a) $\Delta x = \frac{1}{2}(v_0 + v)t^2$ (b) $\Delta x = v_0 + at$ (c) $v = v_0 \sin \omega t^2$

4. The dimensions of the centripetal acceleration, $a = v^2 / r$, is given by: (a) $ML^{-2}T^2$ (b) $ML^{-1}T^{-2}$ (c) ML^2T^{-2}

5. If the velocity of a moving car fits the relation $v^2 = 16 + 0.24 \Delta x$, its acceleration is: (a) 0.12 m/s^2 (b) 0.24 m/s^2 (c) 16 m/s^2

The velocity-time graph for an object moving along a straight path is shown in the figure.

- 6. Its acceleration during the time interval 0 to 5 s is (a) $-8/5 \text{ m/s}^2$ (b) zero m/s^2 (c) $8/5 \text{ m/s}^2$
- 7. Its acceleration during the time interval 15 to 20 s is (a) $-8/5 \text{ m/s}^2$ (b) zero m/s^2 (c) $8/5 \text{ m/s}^2$
- 8. Its acceleration during the time interval 5 to 15 s is (a) $-8/5 \text{ m/s}^2$ (b) zero m/s^2 (c) $8/5 \text{ m/s}^2$

9. A care of mass 1200kg travels with constant speed of 20 m/s. The affected force on it is
(a) 24000 N
(b) zero
(c) 24000 dyne

10. An airplane, see the figure, flies 200 Km due to east from city

A to city B and then 300 km in the direction of 30° north of east from city B to city C. How far city C from City A?

(a) 609.88 km (b) 435.89 km (c) 483.72 km

11. which of the following relations is correct

(a)
$$v = v_0 + x t$$
 (b) $x = x_0 + \frac{1}{2} a t^2$

12. If the Cartesian coordinates of a point in the xy-plane are (-3.5, -2.5) m, then the polar coordinate of this point are:

(a) r = 3.4m, $\theta = 125.5^{\circ}$ (b) r = 3.4m, $\theta = 35.5^{\circ}$ (c) r = 4.3m, $\theta = 216^{\circ}$

13. Take three steps, turn 90°, and then walk four steps. Now count the number of steps it takes to walks in a straight line back to your starting point.
(a) 5 steps
(b) 7 steps
(c) 3.5 steps

- (a) 50 N (b) 77.79 N (c) 100 N
- 15. A 2000kg is slowed down from 20 m/s to 5 m/s in 4s. The force affected on the car is
 (a) 5700 N
 (b) 7500 N
 (c) -7500 N
- 16. which of the following relations is incorrect

(a) $v_y = v_{oy} + a_y t$ (b) $y = y_o + \frac{1}{2}a_y t^2$ (c) $v_o^2 =$

- **17.** In U.S. system of units, the Pascal is equivalent to (a) $kg \cdot m^{-1} \cdot s^{-2}$ (b) $kg \cdot m \cdot s^{-2}$
- **18.** In general, the work-energy theorem states that (a) $\Delta K.E + \Delta P.E = 0$ (b) $W = \Delta K.E - \Delta P.E$

- (c) a and b
- **20.** Two horses are pulling a barge with mass 2×10^3 kg along a canal. If each horse exerts a force of magnitude 6×10^2 N on the barge, $\theta_1 = 30^\circ$ and $\theta_2 = 45^\circ$ then the x-components of the force exerted by the first horse (F_{1x}) is

(a) 6×10^2 N (b) 5.2×10^2 N (c) 4.24×10^2 N

21. The x-components of the force exerted by the second horse (F_{2x}) is (a) 6×10^2 N (b) 5.2×10^2 N (c) 4.24×10^2 N

(c)
$$v_o^2 = v_{oy}^2 + 2a_y t$$

(c) kg \cdot m² \cdot s⁻²

(c) $W = \Delta K.E + \Delta P.E$

22. The total force in x-dire	ction (F_x) is	
(a) $9.44 \times 10^2 \mathrm{N}$	(b) $F_x 12 \times 10^2 N$	(c) $8.48 \times 10^2 \mathrm{N}$
23. The acceleration in x-dim	rection is (a,) is	
(a) 0.424 m/s^2	(b) 0.6 m/s^2	(c) 0.472 m/s^2
24. If the mass of Earth is N	$A_{\rm r}$ and its radius is r, then t	he weight of an object of mass m is
(a) $w = GM_{\rm E}mr^{-2}$	(b) $w = mG$	(c) $w = M_E G$
25. Newton's second law sta	ates that	
(a) The acceleration of a	n object is directly proporti	onal to the net force acting on it
(h) The acceleration of a	an object is inversely proport	tional to its mass
(c) a and b	an object is inversely propor	
26. The sentence states that	" an isolated force can nev	ver occur in nature" represents
(a) Newton's first law	(b) Newton's second law	(c) Newton's third law
27. The sentence states that represents	"an object moves at const	ant velocity unless acted on by a force"
(a) Newton's first law	(b) Newton's second law	(c) Newton's third law
28. The sentence states that and acceleration " repre	" the net force acting on a esents	nn object equals the product of its mass
(a) Newton's first law	(b) Newton's second law	(c) Newton's third law
29. The work done on an ob (a) $F/\Delta x$	bject by a constant force is g (b) $\Delta x / F$	iven by: (c) FΔx
30. SI unit of work is		
(a) Newton \times meter	(b) Kgm^2s^{-2}	(c) a and b
31. The kinetic energy KE SI unit is joule (J) or (a) $\text{Kgm}^{-2}\text{s}^2$	of an object of mass m mov (b) Kgm ² s ⁻²	Ving with a speed v is $KE = \frac{1}{2}mv^2$, so its (c) Kgm^2s^2
	<u> </u>	
32. The energy stored in the	e spring is known as	x = 0
(a) Elastic (b) K 33. A block on the end of x = A and released. In (total distance does it trav (a) A (b) 2 34. The average power delived interval Δt is (a) $P = Fv$ (b) P	a spring is pulled to posi- one full cycle of its motion, vel is A (c) 4A vered to an object during t $Y = W/\Delta t$ (c) a and b	tion the ime
35. dimensions of Young's 1	modulus is given by:	
(a) $ML^{-2}T^{2}$	(b) $ML^{-1}T^{-2}$	(c) ML^2T^{-2}

36. A vertical steel wire (Y The distance the wire is	$X = 2 \times 10^{11} \text{Pa}$) of length is compressed is	4 m is under vertical pressure 0.75×10^7 Pa	a.
(a) 1.5×10^4 m	(b) 1.5×10^{-4} m	(c) 15×10^{-4} m	
37. The conservation of en (a) $P + \frac{1}{2}\rho v^2 + \rho gh$	ergy law in fluids is given $=$ const. (b) A/	n by v = const. (c) $Av = const.$	
38. If the velocity of simple	e pendulum fits the relation	on $\upsilon = -0.25 \cos\left(\frac{\pi}{8}t\right)$, its angular frequency	' is:
(a) 0.393 rad/s	(b) 0.25	(c) $0.25\pi/8$	
39. Pendulum of length 0.1	171m gives period 0.833	3s. What is the value of g in this location?	
(a) $7.93 \mathrm{m/s^2}$	(b) $9.73 \mathrm{m/s^2}$	(c) $9.37 \mathrm{m/s^2}$	
40. The ratio between β : 0 (a) 3 : 1 : 2	t : γ in thermal expansion (b) 1 : 2 : 3	is (c) 2 : 1 : 3	
 41. Hooke's law states that (a) F = -k x (b) 1 42. Point P is known as (a) Breaking point 43. Point R is known as (a) Breaking point 44. The behaviour in the rational states and states and	F = k x (c) $F = k/x(b) Elastic limit (c) Plat(b) Elastic limit (c) Platnge OP represent$	stic limit	
(a) Plastic behavior	(b) Elastic behavior (c	c) no answer O Strain	► 1

45. Pascal duplicated Torricelli's barometer using a red liquid of density 984 kg/m³ as the working liquid. The height h of the liquid column for normal atmospheric pressure is

(a) 67 Cm
(b) 0.76m
(c) 10.29 m

With my best wishes Dr. Salah Hamza