

Benha University
$1^{\text {st }}$ Term Exam (January 2017) Final Exam
Class: $1^{\text {st }}$ Year Students
Subject: Physics (I)

Faculty of computer \& informatics
Date: 12/01/2017
Time: ${ }^{\mu}$ Hs.
Examiner: Dr. Salah Hamza

نموذج إجابة مادة الفقزياء
د./ صلاح عيا إبراهيم حمزة
دور يناير Y. IV
الإجابة باللون الأحمر

Q1) Choose the correct answer and shaded its circle in the answer sheet:
[90 marks]
Note: Select one answer only - don't use corrector - don't choose more than one answer.

1. The symbols that we use in dimensional analysis are
(a) M, L, T
(b) Kg, m, Sec.
(c) No answer
2. The equation $\eta=\pi \mathrm{PR}^{4} / 8 \mathrm{Av} \ell$ where (η) the coefficient of viscosity (P) pressure, (R) radius, (A) is the cross sectional area, (v) velocity, and (ℓ) length, is dimensionally
(a) Correct
(b) Incorrect
(c) No answer
3. Chose the correct answer:
(a) $\Delta x=\frac{1}{2}\left(v_{o}+v\right) t^{2}$
(b) $\Delta x=v_{o}+a t$
(c) $v=v_{o} \sin \omega t^{2}$
4. The dimensions of the centripetal acceleration, $a=v^{2} / r$, is given by:
(a) $\mathrm{ML}^{-2} \mathrm{~T}^{2}$
(b) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
(c) $\mathrm{ML}^{2} \mathrm{~T}^{-2}$
5. If the velocity of a moving car fits the relation $v^{2}=16+0.24 \Delta x$, its acceleration is:
(a) $0.12 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.24 \mathrm{~m} / \mathrm{s}^{2}$
(c) $16 \mathrm{~m} / \mathrm{s}^{2}$

The velocity-time graph for an object moving along a straight path is shown in the figure.
6. Its acceleration during the time interval 0 to 5 s is
(a) $-8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
(b) zero $\mathrm{m} / \mathrm{s}^{2}$
(c) $8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
7. Its acceleration during the time interval 15 to 20 s is
(a) $-8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
(b) zero $\mathrm{m} / \mathrm{s}^{2}$
(c) $8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
8. Its acceleration during the time interval 5 to 15 s is
(a) $-8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
(b) zero $\mathrm{m} / \mathrm{s}^{2}$
(c) $8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
9. A care of mass 1200 kg travels with constant speed of $20 \mathrm{~m} / \mathrm{s}$. The affected force on it is
(a) 24000 N
(b) zero
(c) 24000 dyne
10. An airplane, see the figure, flies 200 Km due to east from city A to city B and then 300 km in the direction of 30° north of east from city B to city C. How far city C from City A?
(a) 609.88 km
(b) 435.89 km
(c) 483.72 km
11. which of the following relations is correct
(a) $v=v_{o}+x t$
(b) $\mathrm{x}=\mathrm{x}_{\mathrm{o}}+\frac{1}{2} \mathrm{at}^{2}$

(c) $v^{2}=v_{o}^{2}+2 a t$
12. If the Cartesian coordinates of a point in the xy-plane are $(-3.5,-2.5) \mathrm{m}$, then the polar coordinate of this point are:
(a) $\mathrm{r}=3.4 \mathrm{~m}, \theta=125.5^{\circ}$
(b) $\mathrm{r}=3.4 \mathrm{~m}, \theta=35.5^{\circ}$
(c) $\mathrm{r}=4.3 \mathrm{~m}, \theta=216^{\circ}$
13. Take three steps, turn 90°, and then walk four steps. Now count the number of steps it takes to walks in a straight line back to your starting point.
(a) 5 steps
(b) 7 steps
(c) 3.5 steps
14. The tension in the two wires that support the 100 N object as in the figure is
(a) 50 N
(b) 77.79 N
(c) 100 N

15. A 2000 kg is slowed down from $20 \mathrm{~m} / \mathrm{s}$ to $5 \mathrm{~m} / \mathrm{s}$ in 4 s . The force affected on the car is
(a) 5700 N
(b) 7500 N
(c) -7500 N
16. which of the following relations is incorrect
(a) $v_{y}=v_{o y}+a_{y} t$
(b) $\mathrm{y}=\mathrm{y}_{\mathrm{o}}+\frac{1}{2} \mathrm{a}_{\mathrm{y}} \mathrm{t}^{2}$
(c) $v_{o}^{2}=v_{o y}^{2}+2 a_{y} t$
17. In U.S. system of units, the Pascal is equivalent to
(a) $\mathrm{kg} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-2}$
(b) $\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}$
(c) $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$
18. In general, the work-energy theorem states that
(a) $\Delta \mathrm{K} \cdot \mathrm{E}+\Delta \mathrm{P} \cdot \mathrm{E}=0$
(b) $\mathrm{W}=\Delta \mathrm{K} \cdot \mathrm{E}-\Delta \mathrm{P} \cdot \mathrm{E}$
(c) $\mathrm{W}=\Delta \mathrm{K} \cdot \mathrm{E}+\Delta \mathrm{P} \cdot \mathrm{E}$
19. Which of the following particles do not have an acceleration
(a) a particle moving in a straight line with constant speed
(b) a particle moving around a curve with constant speed
(c) a and b
20. Two horses are pulling a barge with mass $2 \times 10^{3} \mathrm{~kg}$ along a canal. If each horse exerts a force of magnitude $6 \times 10^{2} \mathrm{~N}$ on the barge, $\theta_{1}=30^{\circ}$ and $\theta_{2}=45^{\circ}$ then the x components of the force exerted by the first horse ($\mathrm{F}_{1 \mathrm{x}}$) is
(a) $6 \times 10^{2} \mathrm{~N}$
(b) $5.2 \times 10^{2} \mathrm{~N}$
(c) $4.24 \times 10^{2} \mathrm{~N}$
21. The x-components of the force exerted by the second horse $\left(\mathrm{F}_{2 \mathrm{x}}\right)$ is
(a) $6 \times 10^{2} \mathrm{~N}$
(b) $5.2 \times 10^{2} \mathrm{~N}$
(c) $4.24 \times 10^{2} \mathrm{~N}$

22. The total force in x -direction $\left(\mathrm{F}_{\mathrm{x}}\right)$ is
(a) $9.44 \times 10^{2} \mathrm{~N}$
(b) $\mathrm{F}_{\mathrm{x}} 12 \times 10^{2} \mathrm{~N}$
(c) $8.48 \times 10^{2} \mathrm{~N}$
23. The acceleration in x-direction is $\left(a_{x}\right)$ is
(a) $0.424 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.6 \mathrm{~m} / \mathrm{s}^{2}$
(c) $0.472 \mathrm{~m} / \mathrm{s}^{2}$
24. If the mass of Earth is M_{E} and its radius is r, then the weight of an object of mass m is
(a) $\mathrm{w}=\mathrm{GM}_{\mathrm{E}} \mathrm{mr}^{-2}$
(b) $w=m G$
(c) $\mathrm{w}=\mathrm{M}_{\mathrm{E}} \mathrm{G}$
25. Newton's second law states that
(a) The acceleration of an object is directly proportional to the net force acting on it
(b) The acceleration of an object is inversely proportional to its mass
(c) a and b
26. The sentence states that " an isolated force can never occur in nature" represents
(a) Newton's first law
(b) Newton's second law
(c) Newton's third law
27. The sentence states that "an object moves at constant velocity unless acted on by a force" represents
(a) Newton's first law
(b) Newton's second law
(c) Newton's third law
28. The sentence states that " the net force acting on an object equals the product of its mass and acceleration" represents
(a) Newton's first law
(b) Newton's second law
(c) Newton's third law
29. The work done on an object by a constant force is given by:
(a) $F / \Delta x$
(b) $\Delta x / F$
(c) $\mathrm{F} \Delta \mathrm{x}$
30. SI unit of work is
(a) Newton \times meter
(b) $\mathrm{Kgm}^{2} \mathrm{~s}^{-2}$
(c) a and b
31. The kinetic energy $K E$ of an object of mass m moving with a speed v is $K E=\frac{1}{2} \mathrm{mv}^{2}$, so its SI unit is joule (J) or
(a) $\mathrm{Kgm}^{-2} \mathrm{~s}^{2}$
(b) $\mathrm{Kgm}^{2} \mathrm{~s}^{-2}$
(c) $\mathrm{Kgm}^{2} \mathrm{~s}^{2}$
32. The energy stored in the spring is known as
(a) Elastic
(b) Kinetic
(c) potential
33. A block on the end of a spring is pulled to position $\mathrm{x}=\mathrm{A}$ and released. In one full cycle of its motion, the total distance does it travel is
(a) A
(b) 2 A
(c) 4 A
34. The average power delivered to an object during time interval Δt is

(a) $\mathrm{P}=\mathrm{Fv}$
(b) $\mathrm{P}=\mathrm{W} / \Delta \mathrm{t}$
(c) a and b
35. dimensions of Young's modulus is given by:
(a) $\mathrm{ML}^{-2} \mathrm{~T}^{2}$
(b) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
(c) $\mathrm{ML}^{2} \mathrm{~T}^{-2}$
36. A vertical steel wire ($\mathrm{Y}=2 \times 10^{11} \mathrm{~Pa}$) of length 4 m is under vertical pressure $0.75 \times 10^{7} \mathrm{~Pa}$. The distance the wire is compressed is
(a) $1.5 \times 10^{4} \mathrm{~m}$
(b) $1.5 \times 10^{-4} \mathrm{~m}$
(c) $15 \times 10^{-4} \mathrm{~m}$
37. The conservation of energy law in fluids is given by
(a) $\mathrm{P}+\frac{1}{2} \rho v^{2}+\rho \mathrm{gh}=$ const.
(b) $\mathrm{A} / \mathrm{v}=$ const.
(c) $\mathrm{Av}=$ const.
38. If the velocity of simple pendulum fits the relation $v=-0.25 \cos \left(\frac{\pi}{8} t\right)$, its angular frequency is:
(a) $0.393 \mathrm{rad} / \mathrm{s}$
(b) 0.25
(c) $0.25 \pi / 8$
39. Pendulum of length 0.171 m gives period 0.833 s . What is the value of g in this location?
(a) $7.93 \mathrm{~m} / \mathrm{s}^{2}$
(b) $9.73 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.37 \mathrm{~m} / \mathrm{s}^{2}$
40. The ratio between $\beta: \alpha: \gamma$ in thermal expansion is
(a) $3: 1: 2$
(b) $1: 2: 3$
(c) $2: 1: 3$
41. Hooke's law states that
(a) $\mathrm{F}=-\mathrm{kx}$
(b) $\mathrm{F}=\mathrm{kx}$
(c) $\mathrm{F}=\mathrm{k} / \mathrm{x}$
42. Point P is known as
(a) Breaking point
(b) Elastic limit
(c) Plastic limit
43. Point R is known as
(a) Breaking point
(b) Elastic limit
(c) Plastic limit
44. The behaviour in the range OP represent
(a) Plastic behavior
(b) Elastic behavior
(c) no answer

45. Pascal duplicated Torricelli's barometer using a red liquid of density $984 \mathrm{~kg} / \mathrm{m}^{3}$ as the working liquid. The height h of the liquid column for normal atmospheric pressure is
(a) 67 Cm
(b) 0.76 m
(c) 10.29 m

With my best wishes
 Dr. Salah Hamza

