

Benha University 1st Term Exam (January 2017) Final Exam Class: 1st Year Students (تخلفات) Subject: Physics (I)

Faculty of computer & informatics Date: 3/01/2017 Time: " Hs. Examiners: Dr. Salah Hamza

Q1) Choose the correct answer and shaded its circle in the answer sheet:[115 marks]Note: Select one answer only - don't use corrector - don't choose more than one answer.

- The equation x = a t² where (x) is the displacement, (a) is the acceleration and (t) is the time, is dimensionally

 (a) Correct
 (b) Incorrect
 (c) No answer
- 2. The slope of the displacement versus time graph gives:(a) acceleration(b) velocity
- **3.** Chose the correct answer:
 - (a) $x = v_0 t + \frac{1}{2} a t^2$ (b) $\Delta x = v_0 + a t$ (c) $\Delta x = \frac{1}{2} (v_0 + v) t$
- 4. If the position of a moving car fits the relation $x = 0.24 t^2$, its acceleration is: (a) $0.48 m/s^2$ (b) $0.24 m/s^2$ (c) $5 m/s^2$

5. If the velocity of a moving car fits the relation $v^2 = 16 + 0.24 \Delta x$, its acceleration is:

(a) 0.12 m/s^2 (b) 0.24 m/s^2

The velocity-time graph for an object moving along a straight path is shown in the figure.

- 6. Its acceleration during the time interval 0 to 5 s is (a) $-8/5 \text{ m/s}^2$ (b) zero m/s^2 (c) $8/5 \text{ m/s}^2$
- 7. Its acceleration during the time interval 15 to 20 s is (a) $-8/5 \text{ m/s}^2$ (b) zero m/s^2 (c) $8/5 \text{ m/s}^2$
- 8. Its acceleration during the time interval 5 to 15 s is (a) $-8/5 \text{ m/s}^2$ (b) zero m/s^2 (c) $8/5 \text{ m/s}^2$

- 10. A care of mass 1200kg travels with constant speed of 20 m/s. The affected force on it is
 (a) 24000 N
 (b) zero
 (c) 24000 dyne
- **11.** The tension in the two wires that support the 100 N object as in the figure is

(a) 50 N (b) 77.79 N (c) 100 N

(c) $16m/s^2$

(c) average velocity

12. A 2000kg is slowed down from	120 m/s to $5 m/s$ in $4 s$. The	force affected on the car is
(a) 5700 N	(b) 7500 N	(c) $-7500 \mathrm{N}$
13. In U.S. system of units, the New	ton is equivalent to	
(a) $N \equiv kg \cdot m^{-2} \cdot s^2$	(b) $N \equiv kg \cdot m \cdot s^{-2}$	(c) $N \equiv kg \cdot m^2 \cdot s^{-2}$
14. In general, the work-energy theo (a) $\Delta K.E + \Delta P.E = 0$	rem states that (b) $W = \Delta K.E - \Delta P.E$	(c) $W = \Delta K.E + \Delta P.E$
15. If dimensions of Young's module	us is given by:	
(a) $ML^{-2}T^{2}$	(b) $ML^{-1}T^{-2}$	(c) ML^2T^{-2}
16. A vertical steel wire ($Y = 2 \times 10^{\circ}$ The distance the wire is compress	¹¹ Pa) of length 4m is under vo used is	ertical pressure 0.75×10^7 Pa.
(a) $1.5 \times 10^4 \mathrm{m}$	(b) 1.5×10^{-4} m	(c) 15×10^{-4} m
17. The conservation of energy law	in fluids is given by	
(a) $P + \frac{1}{2}\rho v^2 + \rho gh = const.$	(b) $A/\upsilon = const.$	(c) $Av = const.$
10 4 1 1 1 1 1 1 1 1 1 1	()	

18. A block on the end of a spring (see the figure) is pulled to a position x = A and released. Through what total distance does it travel in one full cycle of its motion? (note that the block is in equilibrium if it is at x = 0).

(a) 2A (b) 4A (c) A

19. If the velocity of simple pendulum fits the relation $v = -0.25 \cos\left(\frac{\pi}{8}t\right)$, its angular frequency is: (a) 0.393 rad/s (b) 0.25 (c) $0.25\pi/8$

20. Pendulum of length 0.171m gives period 0.833s. What is the value of g in this location? (a) 7.93 m/s^2 (b) 9.73 m/s^2 (c) 9.37 m/s^2

21. Pendulum of length 0.171m gives period 0.833s. What is the value of g in this location?

22. The work done on an object by a constant force is given by: (a) $F/\Delta x$ (b) $\Delta x/F$ (c) $F\Delta x$

23. SI unit of work is

(a) Newton × meter (b) Kgm^2s^{-2} (c) a and b

With our best wishes

Dr. Salah Hamza