Benha University
$1^{\text {st }}$ Term Exam (January 2017) Final Exam
Class: $1^{\text {st }}$ Year Students (تخلفات)
Subject: Physics (I)

Faculty of computer \& informatics
Date: 3/01/2017
Time: $\Gamma$ Hs.
Examiners: Dr. Salah Hamza

Q1) Choose the correct answer and shaded its circle in the answer sheet:
[115 marks]
Note: Select one answer only - don't use corrector - don't choose more than one answer.

1. The equation $x=a t^{2}$ where ( $x$ ) is the displacement, (a) is the acceleration and (t) is the time, is dimensionally
(a) Correct
(b) Incorrect
(c) No answer
2. The slope of the displacement versus time graph gives:
(a) acceleration
(b) velocity
(c) average velocity
3. Chose the correct answer:
(a) $\mathrm{x}=v_{0} \mathrm{t}+\frac{1}{2} \mathrm{at}^{2}$
(b) $\Delta x=v_{o}+a t$
(c) $\Delta x=\frac{1}{2}\left(v_{o}+v\right) t$
4. If the position of a moving car fits the relation $\mathrm{x}=0.24 \mathrm{t}^{2}$, its acceleration is:
(a) $0.48 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.24 \mathrm{~m} / \mathrm{s}^{2}$
(c) $5 \mathrm{~m} / \mathrm{s}^{2}$
5. If the velocity of a moving car fits the relation $v^{2}=16+0.24 \Delta x$, its acceleration is:
(a) $0.12 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.24 \mathrm{~m} / \mathrm{s}^{2}$
(c) $16 \mathrm{~m} / \mathrm{s}^{2}$

The velocity-time graph for an object moving along a straight path is shown in the figure.
6. Its acceleration during the time interval 0 to 5 s is
(a) $-8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
(b) zero $\mathrm{m} / \mathrm{s}^{2}$
(c) $8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
7. Its acceleration during the time interval 15 to 20 s is
(a) $-8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
(b) zero $\mathrm{m} / \mathrm{s}^{2}$
(c) $8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
8. Its acceleration during the time interval 5 to 15 s is
(a) $-8 / 5 \mathrm{~m} / \mathrm{s}^{2}$
(b) zero $\mathrm{m} / \mathrm{s}^{2}$
(c) $8 / 5 \mathrm{~m} / \mathrm{s}^{2}$

9. Take three steps, turn $90^{\circ}$, and then walk four steps. Now count the number of steps it takes to walks in a straight line back to your starting point.
(a) 5 steps
(b) 7 steps
(c) 3.5 steps
10. A care of mass 1200 kg travels with constant speed of $20 \mathrm{~m} / \mathrm{s}$. The affected force on it is
(a) 24000 N
(b) zero
(c) 24000 dy ne
11. The tension in the two wires that support the 100 N object as in the figure is
(a) 50 N
(b) 77.79 N
(c) 100 N

12. A 2000 kg is slowed down from $20 \mathrm{~m} / \mathrm{s}$ to $5 \mathrm{~m} / \mathrm{s}$ in 4 s . The force affected on the car is
(a) 5700 N
(b) 7500 N
(c) -7500 N
13. In U.S. system of units, the Newton is equivalent to
(a) $\mathrm{N} \equiv \mathrm{kg} \cdot \mathrm{m}^{-2} \cdot \mathrm{~s}^{2}$
(b) $\mathrm{N} \equiv \mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}$
(c) $\mathrm{N} \equiv \mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$
14. In general, the work-energy theorem states that
(a) $\Delta \mathrm{K} \cdot \mathrm{E}+\Delta \mathrm{P} \cdot \mathrm{E}=0$
(b) $\mathrm{W}=\Delta \mathrm{K} . \mathrm{E}-\Delta \mathrm{P} . \mathrm{E}$
(c) $\mathrm{W}=\Delta \mathrm{K} \cdot \mathrm{E}+\Delta \mathrm{P} \cdot \mathrm{E}$
15. If dimensions of Young's modulus is given by:
(a) $\mathrm{ML}^{-2} \mathrm{~T}^{2}$
(b) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
(c) $\mathrm{ML}^{2} \mathrm{~T}^{-2}$
16. A vertical steel wire ( $\mathrm{Y}=2 \times 10^{11} \mathrm{~Pa}$ ) of length 4 m is under vertical pressure $0.75 \times 10^{7} \mathrm{~Pa}$. The distance the wire is compressed is
(a) $1.5 \times 10^{4} \mathrm{~m}$
(b) $1.5 \times 10^{-4} \mathrm{~m}$
(c) $15 \times 10^{-4} \mathrm{~m}$
17. The conservation of energy law in fluids is given by
(a) $\mathrm{P}+\frac{1}{2} \rho v^{2}+\rho \mathrm{gh}=$ const.
(b) $\mathrm{A} / \mathrm{v}=$ const.
(c) $\mathrm{Av}=$ const.
18. A block on the end of a spring (see the figure) is pulled to a position $\mathrm{x}=\mathrm{A}$ and released. Through what total distance does it travel in one full cycle of its motion? (note that the block is in equilibrium if it is at $\mathrm{x}=0$ ).

(a) 2 A
(b) 4 A
(c) A
19. If the velocity of simple pendulum fits the relation $v=-0.25 \cos \left(\frac{\pi}{8} t\right)$, its angular frequency is:
(a) $0.393 \mathrm{rad} / \mathrm{s}$
(b) 0.25
(c) $0.25 \pi / 8$
20. Pendulum of length 0.171 m gives period 0.833 s . What is the value of g in this location?
(a) $7.93 \mathrm{~m} / \mathrm{s}^{2}$
(b) $9.73 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.37 \mathrm{~m} / \mathrm{s}^{2}$
21. Pendulum of length 0.171 m gives period 0.833 s . What is the value of g in this location?
22. The work done on an object by a constant force is given by:
(a) $F / \Delta x$
(b) $\Delta x / F$
(c) $\mathrm{F} \Delta \mathrm{x}$
23. SI unit of work is
(a) Newton $\times$ meter
(b) $\mathrm{Kgm}^{2} \mathrm{~s}^{-2}$
(c) a and b

## With our best wishes

## Dr. Salah Hamza

