لطامعة بنها - كلية الحاسبات المسثوى الثانى
د . / عمرو سليمان محمود

مدرس بقسم الرياضيات بكلية العلوم
د . / محمد السيد عبدالعال عبد(لغنى
مدرس بقسم الرياضيات بكلية العلوم
اسئلهه + نموذج إجابه

$$
\begin{aligned}
& \text { المادة : رباضبيات (r) }
\end{aligned}
$$

Answer the following questions (marks ir.)

Question 1.

1) Show that for two sets A and B

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

2) Prove that the set $F=\left\{1+x, 1-x, x^{2}, 3 x^{3}\right\}$ is a base for $P_{3}(R)$.
3) Let R be the relation on $N \times N$ defined by $(a, b) R(c, d) \Leftrightarrow a+d=b+c$
a) Show that R is an equivalence relation
b) Find $[(1,1)]$ and $[(2,5)]$.

Question 2.

1) Prove that if $T: V \rightarrow W$ and $S: W \rightarrow Z$ are linear transformations, then the composition $S \circ T$ is also a linear transformation.
2) Let $f: R^{2} \rightarrow R^{2}$ be the function defined by $f(x, y)=(2 x-3 y, x-2 y)$
a) Show that f is a bijective function and find the inverse f^{-1}
b) Prove that f is a linear transformation and find $\operatorname{Ker}(f)$, Nullity (f).

Question 3.

1. Given $A=\left(\begin{array}{cc}-2 & -9 \\ 1 & 4\end{array}\right)$, Prove that, for every positive integer n,

$$
A^{n}=\left(\begin{array}{cc}
1-3 n & -9 n \\
n & 1+3 n
\end{array}\right)
$$

2. If a connected planar graph G has V vertices and E edges and dividing the plane into F faces, then prove that: $F=E-V+2$.
3. Define a Boolean algebra $\left(B, \oplus,{ }^{*},{ }^{-}, 0,1\right)$ and for all $b_{1}, b_{2} \in B$, prove that:

There is only one element $\overline{b_{1}} \in B$ such that $b_{1} \oplus \overline{b_{1}}=1$ and $b_{1} * \overline{b_{1}}=0$.
4. Find the inverse (if it exists) of the following matrix:

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 3 \\
4 & 1 & 5
\end{array}\right)
$$

Question 2.

1. Find the value λ which make the following system has an infinite number of solutions and write the solution set of the system:

$$
\begin{aligned}
& 5 x+2 y-z=1 \\
& 2 x+3 y+4 z=7 \\
& 4 x-5 y+\lambda z=\lambda-5
\end{aligned}
$$

2. Define Trees, the complete graph K_{n}, the complete bipartite graph $K_{r, s}$ and Eulerian path, and for which values of n, r, s, the graphs $K_{n}, K_{r, s}$ are Eulerian?
3. Find the matrix A^{2}, where A be the adjacency matrix, for the following graph: and write all edge sequences of length 2 joining v_{1}, v_{2}.

Date: r.17/1/1ะ
First Question:

1) Show that for two sets A and B

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

We know that for two statements p, q and s, we have

$$
\begin{align*}
p \vee(q \wedge s) & \equiv(p \vee q) \wedge(p \vee s) \\
A \cup(B \cap C) & \stackrel{\text { def }}{=}\{x \mid x \in A \vee x \in(B \cap C)\} \\
& \stackrel{\text { def }}{=}\{x \mid x \in A \vee(x \in B \wedge x \in C)\} \\
& =\{x \mid x \in A \vee(x \in B \wedge x \in C)\} \\
& \triangleq\{x \mid(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)\} \\
& =\{x \mid x \in(A \cup B) \wedge x \in(A \cup C)\} \\
& \stackrel{\text { def }}{=}(A \cup B) \cap(A \cup C)
\end{align*}
$$

This completes the proof.
2) Prove that the set $F=\left\{1+x, 1-x, x^{2}, 3 x^{3}\right\}$ is a base for $P_{3}(R)$.
.

$$
\begin{aligned}
& a(1+x)+b(1-x)+c x^{2}+d\left(3 x^{3}\right)=0 \\
& (a+b)+(a-b) x+c x^{2}+3 d x^{3}=A+B x+C x^{2}+D x^{3} \\
& \frac{(A+B)}{2}(1+x)+\frac{(A-B)}{2}(1-x)+C x^{2}+\frac{D}{3}\left(3 x^{3}\right)=A+B x+C x^{2}+D x^{3}
\end{aligned}
$$

$\left\{1+x, 1-x, x^{2}, 3 x^{3}\right\}$ is span and linear independent so it is a base for $P_{3}(R)$

```
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
```

3) Let R be the relation on $N \times N$ defined $b y(a, b) R(c, d) \Leftrightarrow a+d=b+c$
c) Show that R is an equivalence relation
d) Find $[(1,1)]$ and $[(2,5)]$
(a) It is clear that R satisfies the following conditions
(I) \underline{R} is reflexive:

$$
\begin{aligned}
a+b=b+a \quad \forall a, b \in N & \Rightarrow(a, b) R(a, b) \quad \forall(a, b) \in N \times N \\
& \Rightarrow R \text { is reflexive }
\end{aligned}
$$

(II) \underline{R} is symmetric:

$$
\begin{aligned}
(a, b) R(c, d) & \Rightarrow a+d=b+c \\
& \Rightarrow b+c=a+d \\
& \Rightarrow c+d=d+a \\
& \Rightarrow(c, d) R(a, b)
\end{aligned}
$$

From (I) and (II), we conclude that R is an equivalence relation on $N \times N$

$$
\begin{aligned}
{[(1,1)] } & :=\{(x, y) \in N \times N \mid(1,1) R(x, y)\} \\
& =\{(x, y) \in N \times N \mid 1+y=1+x\} \\
& =\{(x, y) \in N \times N \mid y=x\} \\
& =\{(x, x) \mid x \in N\} \\
{[(2,5)] } & :=\{(x, y) \in N \times N \mid(2,5) R(x, y)\} \\
& =\{(x, y) \in N \times N \mid 2+y=5+x\} \\
& =\{(x, y) \in N \times N \mid y=3+x\} \\
& =\{(x, 3+x) \mid x \in N\}
\end{aligned}
$$

Second Question:

1) Prove that if $T: V \rightarrow W$ and $S: W \rightarrow Z$ are Cinear transformations, then the composition $S \circ T$ is also a linear transformation.

Sol

Let $T: V \rightarrow W$ and $S: W \longrightarrow Z$ be two linear transformations, then

$$
\begin{align*}
(S \circ T)(u+v, z) & =S(T(u+v, z)) \\
& =S(T(u, z)+T(v+z)) \\
& =S(T(u, z))+S(T(v, z)) \\
& =(S \circ T)(u, z)+(S \circ T)(v, z)) \tag{I}\\
(S \circ T)(\propto u, v) & =S(T(\propto u, v)) \\
& =S(\propto T(u, v)) \\
& =\propto S(T(u, v)) \\
& =\propto(S \circ T)(u, v) \tag{II}
\end{align*}
$$

Hence, from (I) and (II), we conclude that $S \circ T$ is also a linear transformation.
2) Let $f: R^{2} \rightarrow R^{2}$ be the function defined by $f(x, y)=(2 x-3 y, x-2 y)$
c) Show that f is a bijective function and find the inverse f^{-1}
d) Prove that f is a Cinear transformation and find $\operatorname{Ker}(f), \operatorname{Nullity}(f)$.

Sol:

(a) One can show that the function f satisfies the following conditions:
(I) f is injective:

$$
\begin{aligned}
f(x, y)=f\left(\dot{x}, y^{\prime}\right) & \Rightarrow(2 x-3 y, x-2 y)=(2 \dot{x}-3 \dot{y}, \dot{x}-2 \dot{y}) \\
& \Rightarrow 2 x-3 y=2 \dot{x}-3 \dot{y} \wedge x-2 y=\dot{x}-2 \dot{y} \\
& \Rightarrow x=\dot{x} \wedge \wedge y=\dot{y} \\
& \Rightarrow \quad(x, y)=(\dot{x}, y)
\end{aligned}
$$

Hence, fis injective.
(II) f is surjective:

Let $(u, v) \in R^{2}$ such that $f(x, y)=(u, v)$, then

$$
\begin{align*}
& \Rightarrow(u, v)=(2 x-3 y, x-2 y) \\
& \Rightarrow u=2 x-3 y \wedge v=x-2 y \\
& \Rightarrow x=2 u-3 v \wedge y=u-2 v \\
& \Rightarrow(x, y)=(2 u-3 v, u-2 v) \tag{*}
\end{align*}
$$

From (I) and (II), we conclude that fis bijective .
From $\left({ }^{*}\right)$, we obtain

$$
f^{-1}(u, v)=(2 u-3 v, u-2 v)
$$

$$
\begin{aligned}
\operatorname{Ker}(f) & :=\left\{(x, y) \in R^{2}: f(x, y)=(0,0)\right\} \\
& =\left\{(x, y) \in R^{2}:(2 x-3 y, x-2 y)=(0,0)\right\} \\
& =\left\{(x, y) \in R^{2}: 2 x-3 y=0 \wedge x-2 y=0\right\} \\
& =\left\{(x, y) \in R^{2}: x=y=0\right\} \\
& =\{(0,0)\}
\end{aligned}
$$

$$
\text { Hence, Nullity }(f)=0
$$

Third Question :

$$
\begin{aligned}
& \text { 1. Given } A=\left(\begin{array}{cc}
-2 & -9 \\
1 & 4
\end{array}\right) \text {, Prove that, for every positive integer } n \text {, } \\
& \qquad A^{n}=\left(\begin{array}{cc}
1-3 n & -9 n \\
n & 1+3 n
\end{array}\right)
\end{aligned}
$$

Sol:
We begin $n=1$ i.e. $A^{1}=\left(\begin{array}{cc}1-3.1 & -9.1 \\ 1 & 1+3.1\end{array}\right)=\left(\begin{array}{cc}-2 & -9 \\ 1 & 4\end{array}\right)=A$
For $n=k$ let

$$
\begin{gathered}
\text { Multiple by matrix } \mathrm{A} A^{k}=\left(\begin{array}{cc}
1-3 k & -9 k \\
k & 1+3 k
\end{array}\right) \\
A^{k+1}=\left(\begin{array}{cc}
1-3 k & -9 k \\
k & 1+3 k
\end{array}\right) \cdot\left(\begin{array}{cc}
-2 & -9 \\
1 & 4
\end{array}\right)=\left(\begin{array}{cc}
-2-3 k & -9-9 k \\
k+1 & 3 k+4
\end{array}\right)=\left(\begin{array}{cc}
1-3(k+1) & -9(k+1 \\
k+1 & 1+3(k+1)
\end{array}\right)
\end{gathered}
$$

We proved at $n=k+1$, completes the proof.
2. If a connected planar graph G has V vertices and E edges and dividing the plane into F faces, then prove that: $F=E-V+2$.
Sol
The proof is by induction on the number of edges of G.
If $E=0$ then $V=1$ (G is connected, so there cannot be two or more vertices) and there is a single face (consisting of the whole plane except the single vertex), so $F=1$. therefore holds in this case.

Suppose，now，that the theorem holds for all graphs with fewer than n edges．Let G be a connected planar graph with n edges；that is $|E|=n$ ．If G is a tree，then $|V|=n+1$ and $|F|=1$ ，so the theorem holds in this case too．
If G is not a tree choose any cycle in G and remove one of its edges．The resulting graph G is connected，planar and has $n-1$ edges，$|V|$ vertices and $|F|-1$ faces．
By the inductive hypothesis，Euler＇s formula holds for G ：
$|F|-1=(|E|-1)-|V|+2$
so $|F|=|E|-|V|+2$
as required．
3．Define a Boolean algebra $\left(B, \oplus,{ }^{*},{ }^{-}, 0,1\right)$ and for all $b_{1}, b_{2} \in B$ ，prove that： There is only one element $\overline{b_{1}} \in B$ such that $b_{1} \oplus \overline{b_{1}}=1$ and $b_{1} * \overline{b_{1}}=0$ ．
Sol
Boolean algebra consists of a set B together with three operations
defined on that set．These are：
（a）a binary operation denoted by \oplus referred to as the sum ；
（b）a binary operation denoted by $*$ referred to as the product ；
（c）an operation which acts on a single element of B ，denoted by－， where，for any element $b \in B$ ，the element $b^{-} \in B$ is called the
complement of b^{-}（An operation which acts on a single member of a set S and which results in a member of S is called a unary operation．）

The following axioms apply to the set B together with the operations \oplus ，＊and－．
B1．Distinct identity elements belonging to B exist for each of the binary operations \oplus and $*$ and we denote these by $\mathbf{0}$ and $\mathbf{1}$ respectively．Thus we have

$$
\begin{aligned}
& b \oplus \mathbf{0}=\mathbf{0} \oplus b=b \\
& b * \mathbf{1}=\mathbf{1} * b=b \quad \text { for all } b \in B .
\end{aligned}
$$

for all $a, b, c \in B$ ．

$$
\begin{aligned}
(a * b) * c & =a *(b * c) \\
(a \bigoplus b) \oplus c & =a \bigoplus(b \oplus c)
\end{aligned}
$$

B2．The operations \oplus and $*$ are associative，that is
B3．The operations \oplus and $*$ are commutative，that is

$$
\begin{gathered}
a \oplus b=b \oplus a \\
a * b=b * a \text { for all } a, b \in B .
\end{gathered}
$$

B4．The operation \oplus is distributive over $*$ and the operation $*$ is distributive over \oplus ，that is

$$
\begin{gathered}
a \oplus(b * c)=(a \oplus b) *(a \oplus c) \\
a *(b \oplus c)=(a * b) \oplus(a * c) \text { for all } a, b, c \in B
\end{gathered}
$$

B5. For all $\mathbf{b} \in \mathbf{B}, \mathbf{b} \oplus \bar{b}=1$ and $\mathbf{b} * \bar{b}=0$.
-=-
There is only one element $\overline{b_{1}} \in B$ such that $b_{1} \oplus \overline{b_{1}}=1$ and $b_{1} * \overline{b_{1}}=0$.

$$
\begin{gathered}
b \oplus \overline{b_{1}}=b_{1} \oplus b=1 \quad b \oplus \overline{b_{2}}=b_{2} \oplus b=1 \\
b * \overline{b_{1}}=b_{1} * b=0, \quad b * \overline{b_{2}}=b_{2} * b=0
\end{gathered}
$$

Thus we have

$$
\begin{array}{rlrl}
\overline{b_{1}} & =\overline{b_{1}} * 1 & & \text { (axiom B1) } \\
& =\overline{b_{1}} *\left(\mathrm{~b} \oplus \overline{b_{2}}\right) & \\
& =\left(\overline{b_{1}} * \mathrm{~b}\right) \oplus\left(\overline{b_{1}} * \overline{b_{2}}\right) & & \text { (axiom B4) } \\
=0 \oplus\left(\overline{b_{1}} * \overline{b_{2}}\right) & & \\
=0 \oplus\left(\overline{b_{1}} * \overline{b_{1}}\right) & & \text { (axiom B3) } \\
& =\left(\overline{b_{2}} * \mathrm{~b}\right) \oplus\left(\overline{b_{2}} * \overline{b_{1}}\right) & & \text { (axiom B4) } \\
& =\overline{b_{2}} *\left(\mathrm{~b} \oplus \overline{b_{1}}\right) & & \tag{axiomB4}\\
& =\overline{b_{2}} * 1 & & \text { (axiom B1). } \\
& =\overline{b_{2}} & &
\end{array}
$$

We have shown that $\overline{b_{1}}=\overline{b_{2}}$ and so we can conclude that the complement is unique.
-=-=-=-=-=-=-=--=
4. Find the inverse (if it exists) of the following matrix:

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 3 \\
4 & 1 & 5
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Sol } \\
& A=\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
2 & -1 & 3 & 0 & 1 & 0 \\
4 & 1 & 5 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\substack{r_{3} \leftrightarrow r_{2}-2 r_{1} \\
z_{3} \leftrightarrow r_{3}-4 r_{11}}}\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & -3 & 1 & -2 & 1 & 0 \\
0 & -3 & 1 & -4 & 0 & 1
\end{array}\right) \\
& \xrightarrow{r_{3} \leftrightarrow \frac{-1}{3} r_{2}}\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & \frac{-1}{3} & \frac{2}{3} & \frac{-1}{3} & 0 \\
0 & -3 & 1 & -4 & 0 & 1
\end{array}\right) \xrightarrow{\substack{r_{1} \leftrightarrow r_{1}-r_{2} \\
r_{3} \rightarrow 3+3 r_{2}}}\left(\begin{array}{ccc|ccc}
1 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & 1 & \frac{-1}{3} & \frac{2}{3} & \frac{-1}{3} & 0 \\
0 & 0 & 0 & -2 & -1 & 1
\end{array}\right)
\end{aligned}
$$

No further sequence of elementary row operations will complete the conversion of the matrix A to $I 3$. The matrix A is not row-equivalent to $I 3$. Therefore, A does not have an inverse and is a singular matrix.

Date: r. 1 $7 / \mathrm{L} / \mathrm{s}$
Fourth Question:

1. Find the value λ which make the following system has an infinite number of solutions and write the solution set of the system:

$$
\begin{aligned}
& 5 x+2 y-z=1 \\
& 2 x+3 y+4 z=7 \\
& 4 x-5 y+\lambda z=\lambda-5
\end{aligned}
$$

$$
(A / b)=\left(\begin{array}{cccc}
5 & 5 & -1 & 1 \\
2 & 3 & 4 & 7 \\
4 & -5 & \lambda & \lambda-5
\end{array}\right) \xrightarrow{\substack{r_{2} \leftrightarrow r_{1} \\
r_{2} \rightarrow-3 n_{1}+r \\
r_{3} \rightarrow r_{1}+r_{3}}}\left(\begin{array}{cccc}
1 & \frac{2}{5} & \frac{-1}{5} & \frac{1}{5} \\
0 & \frac{11}{5} & \frac{22}{5} & \frac{33}{5} \\
0 & \frac{-33}{5} & 4+5 \lambda & \lambda-\frac{29}{5}
\end{array}\right)
$$

$$
\xrightarrow{r}\left(\begin{array}{cccc}
1 & \frac{2}{5} & \frac{-1}{5} & \frac{1}{5} \\
0 & 1 & 2 & 3 \\
0 & 0 & 70+5 \lambda & 5 \lambda+70
\end{array}\right)
$$

the value λ which make the system has an infinite number of solutions is $\lambda=-14$ take $\lambda=-14$ we have that:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & \frac{2}{5} & \frac{-1}{5} & \frac{1}{5} \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& y+2 z=3 \\
& x+\frac{2}{5} y-\frac{1}{5} z=\frac{1}{5} \Rightarrow 5 x+2 y-z=1
\end{aligned}
$$

Take $z=s$, so we have $y=3-2 s$,

$$
x=3 s-5
$$

Set solution is $\{3 s-5,3-2 s, s\}$

Benha University
Faculty of Computers and Informatics
Answer Model
Level: 2
Subject : Math. 3

Date: r.1ヶ/1/1!
2. Define Trees, the complete graph K_{n}, the complete bipartite graph $K_{r, s}$ and Eulerian path, and for which values of n, r, s, the graphs $K_{n}, K_{r, s}$ are Eulerian?

SOC
A trees is a connected graph which contains no cycles.
the complete graph K_{n} is a simple graph in which every pair of distinct vertices is joined by an edge.

A complete bipartite graph is a bipartite graph such that every vertex of V_{1} is joined to every vertex of V_{2} by a unique edge.
An Eulerian path in a graph G is a closed path which includes every edge of G. A graph is said to be Eulerian if it has at least one Eulerian path.

The complete graph K_{n} is ($n-1$)-regular-every vertex has degree $n-1$.
Since it is connected, K_{n} is Eulerian if and only if n is odd (so that $\mathrm{n}-1$ is even).
A complete bipartite graph $K_{r, s}$ is Eulerian if and only if r, s is even.

=-=-=-=-=-=-=-=-=-========-=-=-=-==============-=-=-=-=-=-=-=

3. Find the matrix A^{2}, where A be the adjacency matrix, for the following graph: and write all edge sequences of length 2 joining v_{1}, v_{2}.

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad A^{2}=\left(\begin{array}{llll}
6 & 3 & 2 & 1 \\
3 & 2 & 1 & 0 \\
2 & 1 & 2 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \\
& \mathrm{e}_{2} \mathrm{e}_{1} ; \quad \mathrm{e}_{3} \mathrm{e}_{2} ; \\
& \mathrm{e}_{4} \mathrm{e}_{2} .
\end{aligned}
$$

