

Computational Environmental & Global Changes Course Specifications

Faculty: Computer and Informatics **Department:** Scientific Computing

Program(s) on which the course is given : Bachelor in Computer & Information Sciences

Major or Minor element of programs : Scientific Computing

Department offering the program : Scientific Computing

Department offering the course : Scientific Computing

Academic year / Level : 4th Year / B.Sc.

Date of specification approval : 15/3/2010

A. Basic Information

Title: Computational Environmental & Global Changes Code: SCC 438

Lecture: 3 hrs/week **Tutorial:** 2 hrs/week **Practical:** ---

Credit Hours: --- Total: 5 hrs/week

B. Professional Information

1. Overall Aims of Course:

This course introduces students to computational geometry. Upon completion of this course, students will have Good-knowledge of computational geometry topics like Line-segment intersection, segment-segment intersection, Voronoi diagram, Delaunay triangulation, Motion Planning, etc. Graduates will also be able to design efficient algorithms for topics in

computational geometry.

2. Intended Learning Outcomes of Course (ILOs):

a- Knowledge and Understanding:

- a1- Illustrate Basics of Computational Geometry.
- a2- Explain Line segment intersection.
- a3- Name Segment-segment intersection.
- a4- State Visibility graph.
- a5- State Voronoi-Diagrams.
- a6- State Delaunay triangulations.
- a7- Explain Motion planning.

b- Intellectual Skills:

- b1- Implement Geometrical problems.
- b2-Build and plan an efficient algorithm for the given problem.
- b3- Conclude and make proof of the theories using systematic steps.
- b4- Integrate application of the geometrical algorithms in other scientific area.

c- Professional and Practical Skills:

Knowledge of the concepts and material presented in this course will provide the students with practical know-how to:

- c1- Design an effective algorithm for the geometrical problem.
- c2- Write effective computer programs for the geometrical algorithm.

d- General and Transferable Skills:

Knowledge of the concepts and material presented in the course will provide the students with the capability to:

- d1- Understand and present the geometrical problem and how to deal with it as a data to be processed.
- d2-Write and discuss effective computer programs that employ efficient algorithms.
- d3- Analyze and design algorithms for solving scientific problems related to other disciplines.

e. Attitude:

- e1- Learn how to make relation with other, and the limit of this relation.
- e2- Demonstrate an ethical behavior toward software copyrights
- e3- Explain the nature of privacy and how it is protected by the Data Protection

3. Contents:

Topic	No. of hours	Tutorial/	
		Lecture	Practical
An introduction to the global system interactions	5	3	2
responsible for global environment change. Concepts			
for providing a global description of the earth system.	5	3	4
(Part I)			
An introduction to the global system interactions			
responsible for global environment change. Concepts	5	3	2
for providing a global description of the earth system.			
(Part II)			
An introduction to the global system interactions			
responsible for global environment change. Concepts	_	3	2
for providing a global description of the earth system.	5	3	4
(Part III)			
Basic environmental processes influencing global			
change. Natural causes of past and present global	5	3	2
changes.(Part I)			
Basic environmental processes influencing global			
change. Natural causes of past and present global	5	3	2
changes. (Part II)			
Basic environmental processes influencing global			
change. Natural causes of past and present global	5	3	2
changes. (Part III)			
Human consequences of global system changes.	5	3	2
Climate and hydrological systems. Global warming.			

Deforestation. Ozone depletion. Ecological system			
dynamics. (Part I)			
Human consequences of global system changes.	5	3	2
Climate and hydrological systems. Global warming.			
Deforestation. Ozone depletion. Ecological system			
dynamics. (Part II)			
Human consequences of global system changes.			
Climate and hydrological systems. Global warming.	5	3	2
Deforestation. Ozone depletion. Ecological system			
dynamics. (Part III)			
Human consequences of global system changes.			
Climate and hydrological systems. Global warming.	5	3	2
Deforestation. Ozone depletion. Ecological system			
dynamics. (Part IV)			
Introduction to climate and global change monitoring.			
Satellite instrumentation and calibration. Model	5	3	2
predictions. (Part I)			
Introduction to climate and global change monitoring.			
Satellite instrumentation and calibration. Model	5	3	2
predictions. (Part II)			
Introduction to climate and global change monitoring.			
Satellite instrumentation and calibration. Model	5	3	2
predictions. (Part III)			
Introduction to climate and global change monitoring.			
Satellite instrumentation and calibration. Model	5	3	2
predictions. (Part IV)			