Benha University
$1^{\text {th }}$ Term (Nov. 2021)
Class: The second Year
Subject: probability and Statistics
نموذج إجابة

Course Code: SC 446

Answer the following questions [4 questions in 2 page]:

Question No. 1
[20 Marks]
a) How many different license plates are variable if each plate contains a sequence of three letters follwoed by three digits.

ABC 123

Solution:

There are 26 choices for each of the three letters and ten choices for each of the three digits. Hence, by the product rule there are a total of $26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10=17,576,000$ possible license plates.
b) In Statistics class, the teacher needs to have 20 students standing in a row. Among these 20 students ,there are 12 boy, and 8 girl. How many different ways can they be arranged in a row if only their class level will be distinguished?

Solution:

$$
\begin{aligned}
\boldsymbol{n}= & 20, \quad \boldsymbol{n}_{1}=12, \quad \boldsymbol{n}_{2}=\mathbf{8} \\
& =\frac{n!}{n_{1}!n_{2}!}=\frac{20!}{12!8!}=125,970
\end{aligned}
$$

c) A dice is loaded in such a way that an even number is twice as likely to occur as an odd number. If E is the event that a number less than 4 occurs on a single toss of the dice, find $\mathrm{P}(\mathrm{E})$?

Solution:

$$
\begin{aligned}
& S=\{1,2,3,4,5,6\}, \\
& E=\{1,2,3\}
\end{aligned}
$$

We assign a probability of w to each odd number and a probability of $2 w$ to each even number. Since the sum of the probabilities must be 1 , we have $9 w=1$ or $w=1 / 9$.

$$
P(E)=\frac{1}{9}+\frac{2}{9}+\frac{1}{9}=\frac{4}{9}
$$

Question 2

[20 Marks]
a) A die is rolled twice. What is the probability that the sum equal 10 , if you know that $1^{\text {st }}$ element equal 6 ?
Solution: $A=\{46,55,64\}, B=\{61,62,63,64,65,66\}$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 36}{6 / 36}=1 / 6
$$

$$
\begin{aligned}
& P(A)=3 / 36 \\
& P(B)=6 / 36 \\
& P(A \cap B)=1 / 36
\end{aligned}
$$

$(A \cap B)=\{64\}$
b) If $\mathrm{P}(\mathrm{A})=0.2, \mathrm{P}(\mathrm{B})=0.3$ determine the following probabilities: if A , and B are independent
$1-\mathrm{P}(A \cap B)$
2- $P(A \cup B)$
3- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$

Solution:

$$
\begin{aligned}
& P(A \cap B)=P(A) * P(B)=0.2 * 03=0.06 \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.5-0.06=0.44 \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) * P(B)}{P(B)}=P(A)=0.2
\end{aligned}
$$

Question 3

Box \#1 contains 2 red balls and 3 blue balls; Box\#2 contains 5 red balls and 2 blue balls. If the selection of two boxes is equally likely, and the selected ball was red, what is the probabilitiy that it is from Box\#1?

Solution:

$$
\begin{aligned}
& P\left(B_{1}\right)=P\left(B_{2}\right)=0.5 \\
& R \text { : read, } \quad B: \text { blue }
\end{aligned}
$$

Find $P\left(B_{1} \mid R\right)$?

$$
\begin{aligned}
& P\left(B_{1}\right)=P\left(B_{2}\right)=0.5 \\
& R: \text { read, } \quad B: \text { blue } \\
& P\left(R \mid B_{1}\right)=2 / 5=0.4 \\
& P\left(R \mid B_{2}\right)=5 / 7=0.7143 \\
& P\left(B_{1} \mid R\right)=\frac{P\left(R \mid B_{1}\right) P\left(B_{1}\right)}{P(R)}=\frac{(0.4)(0.5)}{P(R)}=\frac{0.2}{0.55715}=0.35897
\end{aligned}
$$

Question No. 4

[5 Marks]

1) The sum of all probabilities equal to:
a. 4
b. 1
c. 3
d. 2
2) The probability of each event lies between:
a. $1 \& 2$
b. $1 \& 10$
c. $0 \& 1$
d. $0 \& 5$
3) The probability of each event, when a coin is tossed for 1000 times with frequencies: Head:455 \& Tail: 545 is:
a. $0.455 \& 0.545$
b. $0.5 \& 0.5$
c. $0.45 \& 0.55$
d. $455 \& 545$
4) An event in the probability that will never be happened is called as -
a. Unsure event
b. Sure event
c. Possible event
d. Impossible event
5) What will be the probability of getting odd numbers if a dice is thrown?
a. $1 / 2$
b. 2
c. $4 / 2$
d. $5 / 2$
