

Faculty of Computers & Artificial Intelligence

1st Term (January 2020) Final Exam Level: 1st level Major: General

Course Code: BS121 Subject: Physics

Benha University

Date: 14/3/2021 Time: 2 Hours

Total Marks: 50 Marks

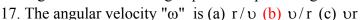
Examiner(s): Prof. Dr. Salah Hamza

Choose the correct answer and shaded its circle (like this ●) in the answer table.

- 1. The flux of electric field of 5 NC⁻¹ in the z-direction through a rectangle with area 4 m² in the xy-plane is (a) $20 \,\mathrm{Nm^2C^{-1}}$ (b) $10 \,\mathrm{Nm^2C^{-1}}$ (c) $0 \,\mathrm{Nm^2C^{-1}}$
- Fig. 1
- 2. From Fig. 1 the flux of E through A is (a) $0 \text{ Nm}^2\text{C}^{-1}$ (b) $A / E \text{ Nm}^2\text{C}^{-1}$ (c) $E / A \text{ Nm}^2\text{C}^{-1}$
- 3. Coulomb constant k_e is measured in (a) Nm^2C^{-2} (b) $Nm^{-2}C^2$ (c) $Nm^{-2}C^{-2}$
- 4. Charges on conducting sphere are distributed at (a) center (b) outer surface (c) randomly
- 5. Object A has a charge of $2\,\mu\text{C}$, and object B has a charge of $6\,\mu\text{C}$. Which statement is true? (a) $\vec{F}_{AB} = -3\vec{F}_{BA}$ (b) $\vec{F}_{AB} = -\vec{F}_{BA}$ (c) $3\vec{F}_{AB} = -\vec{F}_{BA}$

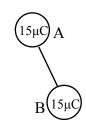
E

- 6. The electric field lines in Fig. 2 are (a) diverge (b) unsymmetrical distributed (c) a and b
- 7. The units of the electric field E is (a) NC⁻² (b) NC² (c) NC⁻¹
- 8. The units of the electric flux $\Phi_{\rm E}$ are (a) Nm C⁻¹ (b) Nm²C⁻¹ (c) NC⁻¹
- 9. The electric force is given by: (a) $Fr^2 = k_e q_1 q_2$; (b) $F = k_e q r^{-1}$; (c) $F = k_e q r^2$
- 10. The units of F/k_e is given by (a) C^2m^{-2} (b) m^2C^{-2} (c) $Nm^{-2}C^{-2}$



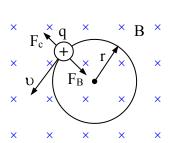
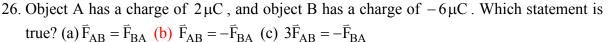
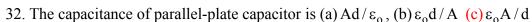
12. Fig. 4 shows a point charge q surrounded by a spherical surface of radius r, the electric flux Φ_E is given by: (a) E/ϵ_o (b) $4\pi q/r^2$ (c) $4\pi k_e q$

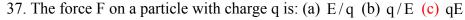
Fig. 3

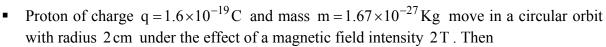

- 13. The flux of a constant electric field of 3 NC⁻¹ in the z-direction through a rectangle with area $6 \,\mathrm{m}^2$ in the xz-plane. (a) $0 \,\mathrm{Nm}^2\mathrm{C}^{-1}$ (b) $2 \,\mathrm{Nm}^2\mathrm{C}^{-1}$ (c) $18 \,\mathrm{Nm}^2\mathrm{C}^{-1}$
- 14. For A and B in Fig. 5 which statement is true? (a) $\vec{F}_{AB} = -\vec{F}_{BA}$ (b) $\vec{F}_{BA} = \vec{F}_{AB}$ (c) a and b
- 15. The electrical work done on moving charge q distance Δx is (a) $qE\Delta x$ (b) $E\Delta x$ (c) $q\Delta x$
- 16. For parallel-plate capacitor filled with dielectric, C, is (a) $\epsilon_0 A/d$ (b) $k\epsilon_0 A/d$ (c) kA/d
- Figure 7 shows a charged particle "q" moving in a magnetic field "B". Then,

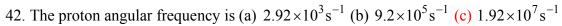
- 18. The magnetic force F_B is (a) qvB (b) mv^2/r (c) qBr
- 19. The centripetal force F_c is (a) qvB (b) mv^2/r (c) qBr
- 20. The radius of the path "r" is (a) mv/qB (b) qB/m (c) qBr/m
- 21. The velocity of the particle " υ " is (a) $m\upsilon/qB$ (b) qB/m (c) qBr/m
- 22. Chose the correct equation (a) mr = qvB (b) mB = qBr (c) mv = qBr
- 23. The angular velocity of the particle " ω " is (a) m ν /qB (b) qB/m (c) qBr/m
- 24. The periodic time "T" can be calculated from (a) qBr/v (b) $qBv/2\pi r$ (c) $2\pi m/qB$
- 25. The mass of the particle "m" can be calculated from (a) qBr/v (b) $qBv/2\pi r$ (c) Bvr/q

Fig. 4

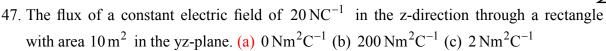




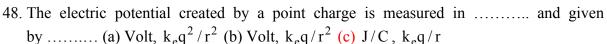

Fig. 6

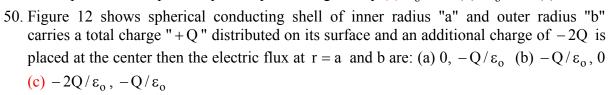

- 27. The unit "Farad" is equivalent to: (a) VC (b) V/C (c) C/V
- 28. The unit "Volt" is equivalent to: (a) J/C (b) C/J (c) JC
- For the two charges in Fig.7 the electric field due to:
- 29. q_1 at P is (a) -0.36×10^4 V (b) 0.76×10^4 V (c) 1.12×10^4 V
- 30. q_2 at P is (a) $-0.36 \times 10^4 \text{ V}$ (b) $0.76 \times 10^4 \text{ V}$ (c) $1.12 \times 10^4 \text{ V}$
- 31. q_1 and q_2 (total) at P is (a) $-0.36 \times 10^4 \text{ V}$ (b) $0.76 \times 10^4 \text{ V}$ (c) $1.12 \times 10^4 \text{ V}$



- 33. Figure 8 shows a conducting sphere of radius R with charge Q. Then, the electric field at point a and b are: (a) zero, k_eQ/r^2 (b) k_eQ/r^2 , zero (c) zero, zero
- 34. In, electric charges move freely (a) conductors (b) insulator (c) rubber
- 35. Charging by requires no contact with objects (a)conduction (b)induction (c)reduction
- 36. The change in electric potential energy of charge q moving a distance Δx in an electric field is given by: (a) $-qE\Delta x$ (b) $E\Delta x$ (c) $-q\Delta x$




- 38. In Fig. 9 the equivalent capacitance is (a) $12.4\,\mu F$ (b) $1.94\,\mu F$ (c) $20\,\mu F$
- 39. The capacitance C of a capacitor is measured in (a) Farad, (b) V/C (c) a and b
- 40. From Gauss law, the electric flux Φ_E is given by (a) $q_{in}\epsilon_o$ (b) q_{in}/ϵ_o (c) ϵ_o/q_{in}
- 41. The material of the sphere in the Fig. 10 is (a) insulator, (b) conductor (c) semiconductor



- 43. The proton velocity in its orbit is (a) $8.83 \times 10^6 \,\mathrm{m/s}$ (b) $3.83 \times 10^5 \,\mathrm{m/s}$ (c) $33.8 \times 10^4 \,\mathrm{m/s}$
- 44. Time required for one evolution is (a) 0.237×10^{-6} s (b) 0.237×10^{-5} s (c) 0.27×10^{-8} s
- 45. In Fig.11 the flux of E through A is (a) $0 \text{ Nm}^2\text{C}^{-1}$ (b) EA Nm^2C^{-1} (c) E/A Nm^2C^{-1}
- 46. The units of Fr^2/k_e is given by (a) C^2m^{-2} (b) m^2C^{-2} (c) C^2

49. The capacitance for parallel-plate capacitor is given by (a) $\epsilon_0 A/d$ (b) $k\epsilon_0 A/d$ (c) kA/d

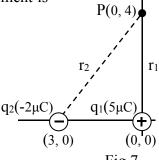


Fig.7

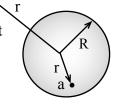
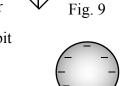



Fig. 8

ζ4 μF

6µF

4μF

Fig. 10

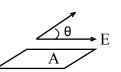


Fig.11

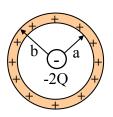


Fig. 12

Practical Exam (in the same answer sheet)

- 51. What is the aim of meter bridge experiment? (a) to determine the resistivity of the material of a wire (b) to verify the laws of resistances (c) a and b
- 52. What is the law of meter bridge experiment? (a) $\left(\frac{L_1}{L_2}\right) \times Z$ (b) $\left(\frac{L_1}{Z}\right) \times L_2$ (c) $\left(\frac{L_2}{Z}\right) \times L_1$
- 53. Can you find high resistances accurately with the help of a meter bridge? (a) yes (b) no (c) may be
- 54. What is the tools used in meter bridge experiment? (a) meter bridge, resistance box resistance wire (b) wooden board, galvanometer, power supply (c) a and b
- 55. The length of resistance wire of meter bridge experiment is? (a) 1m (b) 1.5m (c) 2m
- 56. What is the aim of magnetic moment experiment? (a) verification of the square law of magnetic forces (b) comparing between two magnets on the effect of magnetic needle (c) a and b
- 57. What is the law of magnetometer experiment? (a) $\frac{H}{d^2} = M \tan \theta$ (b) $H \tan \theta = \frac{M}{d^2}$ (c) $Md^2 = H \tan \theta$
- 58. What is the slope of the relation between $\frac{1}{d^2}$ and $\tan\theta$? (a) HM (b) $\frac{H}{M}$ (c) $\frac{M}{H}$
- 59. What is the tools used in magnetometer experiment? (a) two magnets magnetic needle (b) wooden board, galvanometer (c) a and b
- 60. What do you do after you get the θ_1 and θ_2 ? (a) Get the largest from θ_1 and θ_2 (b) Get the average value of θ_1 and θ_2 (c) Get the smallest of θ_1 and θ_2

GOOD LUCK,
Prof. Dr. Salah Hamza